Cho điểm M thuộc đáy BC của tam giác cân ABC. Kẻ các đường thẳng song song với các cạnh bên cắt AB, AC lần lượt tại D, E . I là điểm đối xứng với m qua DE. Chứng minh :
a) I thuộc đường tròn ngoại tiếp tam giác ABC
b)Khi M di chuyển trên BC thì IM luôn đi qua 1 điểm cố định
Từ một điểm P nằm trên cạnh đáy BC của tam giác ABC vẽ các tia Px, Py song song với các cạnh AB, AC cắt AC tại Q, R. Gọi D là điểm đối xứng với P qua QR. Chứng minh rằng D nằm trên đường tròn ngoại tiếp tam giác ABC
Cho đường tròn (O; R), dây cung BC cố định (BC < R), A là điểm di động trên cung lớn BC, (A không
trùng B và C). Gọi AD, BE, CF là các đường cao của tam giác ABC; EF cắt BC tại P, qua D kẻ đường thẳng song
song với EF cắt AC tại Q và cắt AB tại R.
1. Chứng minh tứ giác BQCR là tứ giác nội tiếp.
2. Gọi M là trung điểm cạnh BC. Chứng minh rằng M thuộc đường tròn ngoại tiếp tam giác DEF.
3. Chứng minh hai tam giác EPM và DEM là hai tam giác đồng dạng.
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình
Cho tam giác cân ABC (AB=AC) P là điểm trên cạnh đáy BC . Kẻ các đường thẳng PE,PD lần lượt song song với AB,AC( E thuộc AC,D thuộc AB) gọi Q là điểm đối xứng với P qua DE . Chứng minh bốn điểm Q,A,B,C cùng thuộc một đường tròn.
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.
Chứng minh rằng: Tứ giác CEHD, nội tiếp .Bốn điểm B,C,E,F cùng nằm trên một đường tròn.AE.AC = AH.AD; AD.BC = BE.AC.H và M đối xứng nhau qua BC.Xác định tâm đường tròn nội tiếp tam giác DEF.Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
Chứng minh tứ giác CEHD nội tiếp .Bốn điểm A, E, D, B cùng nằm trên một đường tròn.Chứng minh ED = 1/2BC.Chứng minh DE là tiếp tuyến của đường tròn (O).Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm.Cho tam giác ABC vuông tại A có góc B =60 độ , AM là đường phân giác . Vẽ đường thẳng qua M và vuông góc với BC cắt đoạn thẳng AC tại N và cắt AB tại P .
a) Chứng minh :MN=MB
b)Chứng minh tứ giác pamc nội tiếp đường tròn và tam giác PMC vuông cân
c)Gọi I là trung điểm của đoạn thẳng PC .O là tâm đương tròn ngoại tiếp tam giác PBC
Chứng minh 3 điểm M,O,I thẳng hàng và MO song song BN
d)Chứng minh tứ giác PNOC nội tiếp đường tròn