Cho tam giác ABC cân tại A (AB=AC) và đường tròn tâm O tiếp xúc với cạnh AB,AC ở B và C. Qua điểm M bất kì trên cung nhỏ BC của đường tròn dựng MD, ME,MF lần lượt vuông góc với BC,CA,AB. chứng minh tam giác MED đồng dạng với tam giác MDF , MD^2=ME.MF
Cho tam giác ABC vuông tại A
a) Dựng đường tròn tâm I đi qua B, tiếp xúc với AC, có I thuộc BC
b) cho AB = 24 cm, AC = 32 cm. Tính bán kính đường tròn tâm I
Giusp em với ạ
Cho tam giác ABC vuông tại A
a) Dựng đường tròn tâm I đi qua B, tiếp xúc với AC, có I thuộc BC
b) cho AB = 24 cm, AC = 32 cm. Tính bán kính đường tròn tâm I
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R đường kính BC với AB<AC
a, tính góc BAC
b, vẽ đường tròn tâm I đường kính AO cắt AB , AC lần lượt tại H , K . chứng minh rằng ba điểm H , I ,K thẳng hàng
c, tia OH , OK cắt tiếp tuyến tại A với O lần lượt tại D , E . chứng minh rằng BD+CE=DE
D, chứng minh đường tròn đi qua 3 điểm D , O ,E tiếp xúc với BC
cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài tại C. Gọi AC và BC là hai đường kính đi qua C của hai đường tròn (O) và (O'). DE là dây cung của đường tròn (O) vuông góc với AB tại trung điểm M của AB. Giao điểm thứ hai của DC với đường tròn (O') là F
a - chứng minh tứ giác AEBD nội tiếp
b- chứng minh ba điểm B,E,F thẳng hàng
c- chứng minh tứ giác MDBF nội tiếp
d- DB cắt (O') tại G. chứng minh DF,EG,AB đồng quy
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.
cho tam giác abc nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B, C) . Vẽ đường tròn O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn
2) Chứng minh rằng khi M thay đổi trên đáy Bc thì các đường thẳng MD luôn đi qua 1 điểm cố định
3) giả sử tam giác ABC đều. Tính tích AM.AD theo R. Em có nhân xét gì qua kết quả vừa tìm được.