Cho tam giác abc cân tại a. m và n là 2 điểm chuyển động trên 2 cạnh ab, ac sao cho am=cn. CMR trung điểm i của mn chạy trên một đoạn thẳng cố định
Cho tam giác cân ABC . M và N là hai điểm chuyển động trên hai cạnh AB , AC sao cho AC =CN . Chứng minh rằng trung điểm I của đoạn MN chạy trên một đoạn thẳng cố định
Cho tam giác ABC. M,I lần lượt là trung điểm của BC và AC, K là điểm đối xứng của M qua I
a) cm: AK // BC
b) cm: ABMK là hình bình hành
c) Tam giác ABC cần điều kiện gì để AMCK là hình vuông
d) cm: Nếu AM cố định, B và C di chuyển trên đường thẳng vuông góc với AM tại M sao cho tam giác ABC cân tại A thì điểm I sẽ chuyển động trên đường thẳng cố định.
Cho tam giác ABC cân tại A; M là 1 điểm di động trên cạnh AB, N là 1 điểm di động trên cạnh AC sao cho AM = CN. Hỏi trung điểm I của MN di động trên đường nào?
Cho tam giác ABC cân tại A .M là trung điểm của BC và I là trung điểm của AC .Chứng minh rằng AM cố định ,B và C di động trên đường thẳng vuông góc với AM sao cho tam giác ABC cân tại A thì sẽ di động trên một đường thẳng cố định
Bài 14. Cho tam giác ABC, AD là đường phân giác. M, N lần lượt di động trên các cạnh AB, AC sao cho AM = CN. Các đường trung trực của các đoạn thẳng MN, AC cắt nhau tại E. Chứng minh rằng đường thẳng DE đi qua một điểm cố định
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!
Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.
Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.
Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.
1. Cho tam giác ABC. Trên tia đối của BA, CA lần lượt lấy các điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là các trung điểm của ác đoạn BC, PQ. Đường thẳng MN cắt đường thẳng AB, AC lần lượt tại I,K. CMR: tam giác AIK cân
2. Cho tam giác ABC, AM là trung tuyến. Vẽ đường thẳng d đi qua trung điểm I của AM và cắt AB,AC. Gọi A',B',C' là hình chiếu của A,B,C trên đường thẳng d. CMR: AA'= (BB'+CC')/2
1. Cho tam giác ABC. Trên tia đối của BA, CA lần lượt lấy các điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là các trung điểm của ác đoạn BC, PQ. Đường thẳng MN cắt đường thẳng AB, AC lần lượt tại I,K. CMR: tam giác AIK cân
2. Cho tam giác ABC, AM là trung tuyến. Vẽ đường thẳng d đi qua trung điểm I của AM và cắt AB,AC. Gọi A',B',C' là hình chiếu của A,B,C trên đường thẳng d. CMR: AA'= (BB'+CC')/2