1. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc A cắt BC tại H. Trên AB lấy điểm M,trên tia đối của tia CA lấy điểm N sao cho BM=CN.
a. Nối MN cắt BC tại I. Chứng minh I là trung điểm của MN
b. Đường trung trực của MN cắt Ax tại O. Chứng minh OC vuông góc AC
c. Cm : 4/BC2 = 1/AB2 + 1/AC2
d. Biết AB= 6 cm,OB = 4,5 cm. Tính diện tích tam giác ABC
cho tam giác ABC cân tại A , điểm D thuộc AB , trên tia đối tia của CA lấy điểm E sao cho CE = BD , trên tia đối tia BC lấy điểm F sao cho BF =BD , gọi I là giao điểm của DE và BC chứng minh rằng tam giác FDI cân
1)Cho tam giác ABC cân tại A.Từ B kẻ Bx vuông góc với AC,từ C kẻ Cy vuông góc với AB. Bx cắt Cy tại M
a) CM tam giác MBC cân
b) Trên tia đối AB lấy điểm E, trên tia đối của CA lấy điểm F sao cho CE = BF. CM tam giác MEF cân
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB...
Xem thêm
Cho tam giác ABC cân tại A , đường cao AH. Trên cạnh AB lấy điểm M, trên tia đối của CA lấy điểm N sao cho BM=CN, MN cắt BC tại D.
a/ C/m D là trung điểm MN
b/ Đường trung trực của đoạn thẳng MN cắt AH tại E. Biết AB=6cm, BE=4,5cm. Tính S tam giác ABC
BÀI 3. Cho tam giác ABC. Trên tia đối của tia BC lấy M sao cho BM = BA. Trên tia đối tia CB lấy N sao cho CN = CA. Qua M kẻ đường thẳng song song với AB, qua N kẻ đường thẳng song song với AC, chúng cắt nhau tại P.
a) Chứng minh MA là tia phân giác của PMB , NA là tia phân giác của PNC . b) Chứng minh PA là tia phân giác của MNP .
c) Gọi D là trung điểm AM, E là trung điểm AN, các đường thẳng BD, CE cắt nhau tại Q. Chứng minh QM = QN.
d) Chứng minh ba điểm P, A, Q thẳng hàng.
Cho tam giác cân ABC ( AB = AC ). Tia phân giác Ax của \(\widehat{BAC}\)cắt BC tại H. Trên cạnh AB lấy M. Trên tia đối của tia CA lấy N sao cho BM = CN.
a. Nối M với N cắt Bc tại I. CM: I là trung điểm của MN
b. Tia trung trực của MN cắt AC tại O. CMR: OC \(\perp\)AC
c. Biết AB = 6 cm, OB = 4,5 cm. Tính \(S_{ABC}\)
Tam giác ABC vuông tại A có AC= 3cm; BC= 5cm. Trên tia đối của tia CB lấy điểm D trên tia đối của CA lấy điểm E sao cho CD= 1,5cm; CE= 2,5cm
a. tam giác CDE là tam giác gì? tính DE
b. vẽ AH vuông góc với BC tính AH; BH; CH