Cho tam giác ABC cân tại A, lấy M là trung điểm của BC
a, Chứng minh AM vuông góc BC
b, Kẻ ME vuông góc AB tại E; MF vuông góc AC tại F. Chứng minh rằng ME=MF
c, Chứng minh rằng EF//BC
d, Tia EM cắt AC tại K. Tia FM cắt AB tại H. Tìm điều kiện để tam giác AHK đều
Cho tam giác ABC cân tại A, lấy M là trung điểm của BC.
a) Chứng minh AM vuông góc với BC.
b) Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Chứng minh rằng ME = MF
c) Chứng minh EF song song với BC.
d) Tia EM cắt AC tại K, tia FM cắt AB tại H. Tìm điều kiện để tam giác AHK là tam giác đều.
Cho tam giác ABC có AB AC. Tia phân giác góc BAC cắt BC tại M.a Chứng minh tam giác AMB tam giác AMCb Kẻ ME vuông góc AB, MF vuông góc AC. Chứng minh ME MFc Chứng minh AM vuống góc EFd Qua B vẽ đường thẳng song song với AC cắt FM tại I. Chứng minh BE BI
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )
a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC
b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.
c) Chứng minh rằng tam giác MDE đều
d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm
Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.
a. Chứng minh tam giác ABI = tam giác AHI
b. HI cắt AB tại K. Chứng tỏ rằng BK=HC
c. Chứng minh rằng BH // KC
d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều
Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)
a. Chứng minh : tam giác AHB= tam giác AHC
b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH
c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân
d. Chứng minh BM // AC
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: Tam giác BEM=Tam giác CFM.
b, Chứng minh AM là trung trực của EF.
c, Từ B kẻ đường vuông góc với AB tại B, từ C kẻ đường vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A,D,M thẳng hàng
1 Cho tam giác ABC vuông tại A có góc B =60 độ.Phân giác của góc B cắt AC tại D. Vẽ DE vuông góc BC.
a,Chứng minh tam giác ABE đều.
b,Trên tia đối của tia AB lấy điểm K sao cho AK=CE. Chứng minh D, K, E thẳng hàng.
2.Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E và kẻ MF vuông góc với AC tại F.Chứng minh:
a,Tam giác AMB=tam giác AMC.
b,Tam giác MEF cân.
c,EF song song BC.
help me !
Cho tam giác ABC cân tại A , lấy M là trung điểm của BC
A) chứng minh AM vuông góc với BC
B) kẻ ME vuông góc với AB tại E , MF vuông góc với AC tại F CMR ME = MF C)CMR EF//BC. D)Tia EM cắt AC tại K Tia FM cắt AB tại H Tìm điều kiện của tam giác ABC để tam giác AHK đều. ( ai giải cho mình , mình cảm ơn nhiều nha ❤️❤️❤️)
Cho tam giác ABC cân tại A , lấy M là trung điểm BC
a) CM: AM vuông góc với BC
b) Kẻ \(ME\perp AB\)tại E , \(MF\perp AC\)tại F . CM : ME=MF
c) CM : EF//BC và AF2+ME2=AC2-BM2
d) Tia EM cắt AC tại K . Tia FM cắt AB tại H . Tìm điều kiện của tam giác ABC để tam giác AHK đều
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH