về EF song song AC --> góc B = góc C ( tam giác ABC cân tại A )
ma goc DFB = goc C ( 2 goc dong vi va DF song song AC )
nen goc B = goc DFB--> tam giac BDF can tai D --> BD = DF
cm tam giac DFM = tam giac CME ( g-c-g) --> DM = ME (2 canh tuong ung )
về EF song song AC --> góc B = góc C ( tam giác ABC cân tại A )
ma goc DFB = goc C ( 2 goc dong vi va DF song song AC )
nen goc B = goc DFB--> tam giac BDF can tai D --> BD = DF
cm tam giac DFM = tam giac CME ( g-c-g) --> DM = ME (2 canh tuong ung )
: Cho tam giác ABC cân tại A, một điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy một điểm E sao cho CE = BD; DE cắt cạnh đáy BC tại điểm M. Trên tia đối của tia BC lấy một điểm N sao cho BN = CM. Chứng minh: a/ ΔDBN = Δ ECM b/ Tam giác DMN cân c/ M là trung điểm của đoạn DE
hộ e vs nhá(nhanh nhanh ạ) 1, Tam giác ABC cân tại A. Lấy D,E thuộc BC sao cho BD=BE< BC/2. Đường thẳng kẻ từ D vuông góc vs BC cắt AB tại M, đường thẳng kẻ từ E vuông vs BC cắt AC tại N C/m: a, DM=EN b,EM=DN c, tam giác ADE cân 2, Tam giác ABC cân tại A, D thuộc AB, vẽ DE// AC( E thuộc AC), DI//AC(I thuộc BC) a C/m DB= DI,DB=EC b lấy EC thuộc tia đối tia CA sao cho CF=CE. K là giao điểm của DF và BC. C/m DK=KF thanks ak...vẽ đc hình + gt, kl càng tốt ak
Bài 1: Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD= AE.
1. C/m: DB=EC
2. Gọi O là trung điểm của BD và EC. C/m: tam giác OBC và tam giác ODE là tam giác cân
3. C/m: DE//BC
Bài 2: Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. Trên tia đối của tia CA lấy điểm E sao cho CE=CB. C/m CD//EB
NHớ vẽ hình cho mk nhé! Thank you!
cho tam giác ABC cân tại A, trên AB lấy D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I, trên tia đối của tia BC lấy điểm F sao cho BF=CI
a, tam giác BFD= tam giác CIE
b, CM: tam giác DFI cân
c, CM: D là trung điểm của DE
Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, Trên tia đối của CA lấy E sao cho CE=BD, DE cắt BC tại , trên tia đối củaBC lấy F sao cho BF=CI.c/m:
a)tam giac BFD=tam giac CIE
b) tam giác DFI cân
c) I là trung điểm của DE
cho tam giác ABC có D thuộc AB, trên tia đối CA lấy E sao cho BD=CE, gọi O là giao điểm của BC và DE và O là trung điểm của DE. CMR tam giác ABC cân tại A
cho tam giác abc cân tại a, điểm d thuộc cạnh ab. trên tia đối của tia ca lấy điểm e sao cho ce = bd. kẻ dh và ek vuông góc với bc ( h và k thuộc bc ). gọi m là trung điểm hk. chứng minh 3 điểm d, m, e thẳng hàng
Tam giác ABC cân tại A điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm E sao cho CE=BD. Kẻ DH vuông góc với BC, EK vuông góc với BC (H,K thuộc BC) M là trung điểm của HK. Chứng minh ba điểm D,M,E thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy E sao cho BD=CE. Từ D kẻ DM, từ E kẻ EN cùng vuông góc với đường thẳng BC (M,N thuộc đường thẳng BC)
a)C/m DM=EN
b) C/m tam giác ADM= tam giác AEN.
c) Kẻ tia Dx vuông góc với AD tại D, kẻ tia Ey vuông góc với AE tại E, Dx cắt Ey tại P. C/m rằng AP đi qua trung điểm của DE.
Cho tam giác ABC cân tại A. Lấy D thuộc BC , lấy E thuộc tia đối của tia CB sao cho BD = CE . Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB , AC lần lượt tại M và N . CMR:
a) DM = NE
b) BC cắt MN tại trung điểm I của MN