Cho tam giác ABC cân tại A. Kẻ trung tuyến AD. Tia phân giác của góc ADB cắt AB tại E. Tia phân giác của góc ADC cắt AC tại F. Chứng minh:
a) tam giác BED= tam giác CFD
b) AD là trung tuyến của EF
c) BF, CE và AD cắt nhau tại 1đ
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc B của tam giác ABC cắt AC tại F
a) Góc FBO = 90 độ
b) DF là tia phân giác góc D của tam giác ADB
c) D , E , F thẳng hàng
Cho tam giác ABC cân tại A kẻ AD là tia phân giác của góc A. Vẽ CF là đg trung tuyến của tam giác ABC cắt AD tại G . Vẽ đg trung trệch của đoạn thẳng Đc cắt cạnh AC Tại E Vẽ hình dùm
Cho tam giác ABC có AB=AC, tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB tại E và DF vuông góc với AC tại F. Chứng minh rằng: a) tam giác ADB= tam giác ADC. b)DE=DF. c) AD là đường trung trực của BC
Mng giải giúp vs ạ. Cảm ơn nhiều !
Bài 1: Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và // với BC cắt AC ở E. Đường thẳng qua E và // với AB cắt BC ở F. CMR:
a) AD = EF
b) Tam giác ADE = tam giác EFC
Bài 2: Cho tam giác ABC, tia phân giác của góc C cắt AB ở D. Trên tia đối của tia CA lấy điểm E sao cho CE = CB.
a) CM CD//EB
b) Tia phân giác của góc E cắt đường thẳng CD tại F. Vẽ CK vuông góc với EF tại K. CM CK là tia phân giác của góc ECF
Bài 3: Cho tam giác ABC cân tại A, trên tia AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. CMR:
a) Tam giác BFD = tam giác CIE
b) Tam giác DFI cân
c) I là trung điểm của DE
giúp mình với nhé!
Cho tam giác ABC vuông xuân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc B của tam giác ABC cắt AC tại F a) Góc FBO = 90 độ b)DF là tia phân giác góc D của tam giác ADB c) D , E , F thẳng hàng
1. Cho tam giác ABC cân tại A, có AB= 5cm, BC= 6cm, tia phân giác AD của góc BAC cắt đường trung tuyến BE của tam giác tại G. Tia CG cắt AB tại F
a. So sánh số đo của góc ABC và góc BAC
b. Chứng minh: tam giác ABD= tam giác ACD
c. Chứng minh: F là trung điểm của AB
d. Tính độ dài BG
2. Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm. Tia phân giác của góc ABC cắt AC tại D, kẻ DE vuông góc với BC
a. Tính BC
b. Chứng minh: tam giác BDA= tam giác BDE
c. Chứng minh: AD < DC
d. Gọi K là giao điểm của AB và DE. Chứng minh: AE // KC
Cho tam giác ABC có AB < AC. kẻ đường phân giác AD của góc BAC( D thuộc BC). Trên cạnh AC lấy điểm M sao cho: AM = AB.
Chứng minh:
a, Tam giác ADB= tam giác ADM.
b, Tia MD cắt tia AB tại điểm N. Chứng minh: BN= CM.
c, AD cắt BM tại H và cắt CN tại K. Chứng minh: BM // CN.
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC