a,xét tgiac abk vuông tại k và tgiac ach vuông tại h có : góc bac chung,ab=ac(do tgiac abc cân tại a) =>tgiac abk=tgiac ach ( ch-gn) =>ak=ah( cặp cạnh tương ứng) xét tgiac ahk có ak=ah(cmt)=>tgiac ahk cân tại a b,ta có ah và bk là đường cao , cắt nhau tại i => i là trực tâm => AI cũng là đường cao mà trong tgiac cân, đường cao đồng thời là đường phân giác=> AI cũng là phân giác góc bac(đpcm) c,AI là đường cao tgiac abc => cũng là đường cao tgiac ahk => AI vuông góc hk,bc => hk song song bc ( từ vuông góc->song song)
vài chỗ tui trình bày k ok lắm nên bạn nên trình bày lại theo cách của bạn nhé .-.
a, xét tam giác AKB và tam giác AHC có : góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc AKB = góc AHC = 90
=> tam giác AKB = tam giác AHC (ch-gn)
=> AH = AK (Đn)
=> tam giác AHK cân tại A (Đn)
b, xét tam giác AHI và tam giác AKI có : AI chung
AH = AK (câu a)
góc AHI = góc AKI = 90
=> tam giác AHI = tam giác AKI (ch-cgv)
=> góc HAI = góc KAI (đn) mà AI nằm giữa AH và AK
=> AI là pg của góc HAK (đn)
c, tam giác AHK cân tại A (câu a) => góc AHK = (180 - góc A) : 2
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc A) : 2
=> góc AHK = góc ABC mà 2 góc này đồng vị
=> HK // BC (đl)