Cho tam giác ABC cân tại A Kẻ AH vuông góc với BC H thuộc BC Gọi M là trung điểm của BH trên tia đối của tia ma lấy điểm N sao cho MN = MA
A) chứng minh rằng tam giác AMH bằng tam giác NMB và NB vuông góc với BC
b) Chứng minh rằng AH= MB Từ đó suy ra NB nhỏ hơn AB
C) Chứng minh rằng góc BAM nhỏ hơn góc MAH
D) Gọi I là trung điểm của NC chứng minh rằng ba điểm A,H,I thẳng hàng
PHẢI MẤY THÁNG RỒI MỚI QUAY LẠI ĐÂY ĐÓ CÁC BẠN À:))))))) CÁC BẠN GIÚP MÌNH VỚI NHA
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC ( h thuộc BC ). Gọi M là trung điểm của BH. Trên tia đối của tia AM lấy điểm N sao cho MN= MA.
a) Chứng minh rằng : tam giác AMH = tam giác NMB và NB vuông góc với BC.
b) Chứng minh rằng AH = NB từ đó suy ra NB< AB
c) Chứng minh rằng Góc BAM < MAH.
d) gọi I là trung điểm của NC. Chứng minh rằng : Ba điểm A, H, I thẳng hàng
Cho tam giác ABC cân tại A kẻ AH vuông góc với BC ( H thuộc BC )
a) chứng minh tam giác ABH = tam giác ACH
b) Gọi N là trung điểm của AC hai đoạn thẳng BN và AH cắt nhau tại G trên tia đối của tia NB lấy K sao cho NK = NG
chứng minh G là trọng tâm của tam giác ABC và AG // CK
c) chứng minh G là trung điểm BK
Câu hỏi: Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC (H thuộc BC) Trên tia AH lấy điểm E sao cho HA=HE. Trên tia đối của tia CB lấy điểm F sao cho BC=CF. Gọi M là trung điểm EF.
a) Chứng minh rằng tam giác ABH=tam giác ACH.
b) Cho AB=10cm, AH=8cm. Tính độ dài BC.
c) Chứng minh rằng ba điểm A, C, M thẳng hàng.
Cho tam giác ABc cân tại A, kẻ AH vuông góc với BC. (H thuộc BC)
a, Chứng minh HB = HC và AH là tia phân giác của góc BAC.
b, Lấy D trên tia đối của tia BC sao cho BD = BH, lấy E trên tia đối của của tia BA sao cho BE = BH. Chứng minh rằng DE // AH
So sánh goc DAB và góc BAH.
d, Lấy điểm F sao cho D là trung điểm của EF. Gọi G là trung tâm của EC. Chứng minh rằng F G B thẳng hàng.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC
a/ CM; tam giác ABH= tam giác ACH
b/ Cho AB=15 cm, AH=9cm. Tính BH
c/ Trên AB lấy điểm D. Trên tia đối CA lấy điểm E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy điểm F sao cho BF=CI. Chứng minh tam giác DFI cân
Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.
Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC
Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.
a) Chứng minh ΔAHB và ΔDHB bằng nhau.
b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.
Câu 7. Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
Câu 8. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.
Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:
a) AE = BD;
b) AF // BC.
c) Ba điểm A, E, F thẳng hàng.
Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.
a) Chứng minh góc AFE = gócABC⇒EF//BC và ΔABM=ΔACM.
b) Chứng minh AM⊥BC.
c) Trên cạnh BA lấy điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.
d) Chứng minh EF // BC.
Cho tam giác ABC vuông tại A (AB>AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên cạnh AB lấy điểm E sao cho AC=AE.
a) Chứng minh rằng: tam giác ABC = tam giác ADE.
b) Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM=tam giác ABN và AMN vuông cân.
c) Qua E kẻ AH vuông góc với BC tại H. Chứng minh rằng 3 điểm D,E,H thẳng hàng và CE vuông góc với BD
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H(H€BC)
a) chứng minh tam giác ABH= tam giác ACH
b) trên tia đối của CA lấy E sao cho CA=CE, AH cắt BE tại D. Chứng minh tam giác DBC cân
c) CD cắt AB tại F. chứng minh DF=2C Mình cần gấp ạ, cảm on