Cho tam giác ABC cân tại A. Gọi D là điểm thuộc AC; E là điểm thuộc đường thẳng AB, với B nằm giữa A và E, sao cho CD = BE. Gọi M là giao điểm của DE và BC. Chứng minh rằng : M là trung điểm của DE.
Cho tam giác ABC cân tại A, các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho AD=CE. Từ E kẻ tia EK song song với AB ( K thuộc BC). Gọi M là giao điểm của AK và DE.
a) Chứng minh rằng: M là trung điểm của AK và DE.
b) Vẽ đường tròn tâm M bán kính MK, đường tròn này cắt BC tại điểm thứ hai là H( H không trùng với K). Chứng minh rằng H là trung điểm của BC.
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC . Qua A vẽ đường thẳng xy//BC . Trên cạnh BC lấy điểm D vẽ DE//AB, DF//AC(E,F thuộc xy).Gọi M là giao điểm của AB và DF. Gọi N là giao của AC và DE. Gọi O là giao của AD và CF. Chứng minh rằng:
a) 3 điểm B , O, E thẳng hàng b) 3 điểm M, O , N thẳng hàng
Bài 8: Cho tam giác ABC (AB < AC). Gọi D là điểm nằm giữa A và B, E là điểm nằm giữa A và C sao cho BD = CE. Gọi M, N, I lần lượt là trung điểm của BC, DE, BE.
a, Chứng minh tam giác MIN cân.
b, Đường thẳng MN cắt đường thẳng AB ở P, cắt đường thẳng AC ở Q. Chứng minh tam giác APQ cân.
c, Kẻ phân giác AF của tam giác ABC. Chứng minh MN song song với AF.
Bài 8: Cho tam giác ABC (AB < AC). Gọi D là điểm nằm giữa A và B, E là điểm nằm giữa A và C sao cho BD = CE. Gọi M, N, I lần lượt là trung điểm của BC, DE, BE.
a, Chứng minh tam giác MIN cân.
b, Đường thẳng MN cắt đường thẳng AB ở P, cắt đường thẳng AC ở Q. Chứng minh tam giác APQ cân.
c, Kẻ phân giác AF của tam giác ABC. Chứng minh MN song song với AF.
Bài 8: Cho tam giác ABC (AB < AC). Gọi D là điểm nằm giữa A và B, E là điểm nằm giữa A và C sao cho BD = CE. Gọi M, N, I lần lượt là trung điểm của BC, DE, BE.
a, Chứng minh tam giác MIN cân.
b, Đường thẳng MN cắt đường thẳng AB ở P, cắt đường thẳng AC ở Q. Chứng minh tam giác APQ cân.
c, Kẻ phân giác AF của tam giác ABC. Chứng minh MN song song với AF.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC, lấy D,E thuộc AB,AC sao cho BD = CE. Gọi M,N,I,K theo thứ tự là trung điểm của DE, BC, BE, CD
a) M,I,N,K là hình gì
b) Gọi G,H là giao điểm của IK với AB, AC. Chứng minh tam giác AGH cân