Cho tam giác ABC cân tại A có AH đường cao. Gọi M và N lần lượt là trung điểm AB và AC. Gọi D là điểm đối xứng của H qua M, E là điểm đối xứng của A qua H. Gọi F là hình chiếu của H lên EC, I và K lần lượt là trung điểm HF và FC. Chứng minh EI vuông góc BF
Cho tam giác ABC cân tại A, đường cao AH. Gọi H là trung điểm của AC. Lấy điểm D đối xứng với điểm H qua điểm I
a) CM tứ giác ADCH là hình chữ nhật
b) CM tứ giác ADHB là hình bình hành
c) Gọi E là trung điểm của đoạn thẳng AB. CM điểm A đối xứng với điểm H qua đường thẳng EI
d) Gọi giao điểm của BD và AC là F. Chứng minh AF= \(\frac{1}{3}\)AC
Cho tam giác ABC vuông tại A, đường cao AH. D đối xứng với H qua AB. E đối xứng với H qua AC. Gọi I là giao điểm của AB và DH. K là giao điểm của AC và EH
a) Chứng minh AIHK là hình chữ nhật
b) Chứng minh D, E, A thẳng hàng
c) Gọi m là trung điểm của BC chứng minh AM vuông góc với IK
Cho tam giác ABC vuông tại A. Đường cao ah h gọi là điểm đối xứng h qua AC e là điểm đối xứng của H qua BC chứng minh rằng A là trung điểm của de
Cho tam giác ABC nhọn(AB<AC). Gọi M là trung điểm của BC. Vẽ D là điểm đối xứng với A qua M
A) chứng minh ABDC là hình bình hành
B) vẽ đường cao AH. Gọi E là điểm đối xứng với A qua H. Chứng minh BEDC là hình thang cân
C) gọi N là trung điểm của AC. Gọi K là điểm đối xứng của H qua N. Chứng minh AHCK là hình chữ nhật
Bài 6. Cho tam giác ABC cân tại A có đường cao AH ( H thuộc BC). Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M.
a) Chứng minh tứ giác AHBE là hình chữ nhật.
b) Gọi N là trung điểm của AH. Chứng minh N là trung điểm của EC.
c) Cho AH = 8cm; BC = 12cm. Tính diện tích tam giác AMH.
d) Trên tia đối của tia HA lấy điểm F. Kẻ HK vuông góc với FC (K thuộc FC). Gọi I, Q lần
lượt là trung điểm của HK, KC. Chứng minh rằng: BK vuông góc với FI
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC. Chứng minh rằng D đối xứng với E qua A.
Cho tam giác abc cân tại A có AH là đường cao. Gọi M và N lần lượt là trung điểm của AB và AC. Biết AH=6cm, BC=8cm.
a)Tính diện tích tam giác ABC và độ dài cạnh MN.
b) Gọi D là điểm đối xứng của H qua D. Chứng minh tứ giác AHBD là hình chữ nhật.
c) Gọi E là điểm đối xứng của A qua H. Chứng minh tứ giác ABEC là hình thoi.
d) Gọi F là hình chiếu của H lên cạnh BC, gọi I, K lần lượt là trung điểm của HF và CF. Chứng minh EI vuông góc với BF.
Cho tam giác ABC cân tại A, đường cao AH. Gọi E Là trung điểm của AC, F là điểm đối xứng của H qua E .
a) Chứng minh rằng AFCH là hình chữ nhật
b) Gọi O là trung điểm của AH . Chứng minh ba điểm B, O , F thẳng hàng.
c) Tìm điều kiện của tam giác ABC để AFCH là hình vuông?
d) Khi AFCH là hình vuông, biết AH =5cm. Tính diện tích tứ giác AFCH và diện tích tam giác ABC.