1) Cho tam giác ABC cân tại đỉnh A qua A vẽ đường thẳng d song song với BC. Trên đường thẳng d và các cạnh AB, AC lần lượt lấy các điểm D, E, F sao cho C và D thuộc cùng một nửa mặt phẳng bờ AB và DE=DF. Chứng minh rằng \(\widehat{AED}\)= \(\widehat{AFD}\)
2) Cho tam giác ABC có \(\widehat{A}=30^o\);\(\widehat{B}=40^o\); AD là đường phân giác. Đường thẳng vuông góc với AD tại A cắt BC tại E. Tính giá trị của CE :(AB+AC-BC)
3) cho tam giác \(\widehat{ABC}=40^o\); \(\widehat{ACB}=30^o\). Bên ngoài tam giác đó dựng tam giác ADC có \(\widehat{ACD}=\widehat{CAD}=50^o\)Chứng minh rằng tam giác BAD cân.
Cho tam giác ABC cân tại A có \(\widehat{A}\) = 20o.Trên cạnh AB lấy điểm D sao cho AD = BC . Tính \(\widehat{BDC}\)
Cho tam giác ABC có AB < AC . Trên tia đối của tia AB lấy điểm D sao cho AB = AD . Trên tia đối của tia AC lấy điểm E sao cho AE = AC a) CM : BE = DC
b ) Kẻ tia phân giác góc BDE cắt BC tại I . CM : tam giác BDI cân.
c ) Kẻ tia phân giác góc ACB cắt DI tại F . CM \(2.\widehat{CFD}=\widehat{CED}+\widehat{CBD}\)
1. Cho tam giác ABC cân tại A (\(\widehat{A}\)>90 độ). Trên cạnh BC lấy 2 điểm D và E sao cho BD = DE= EC.
a) CMR: tam giác ADE cân.
b) CMR: BH=CK.
c) Gọi M là trung điểm của BC. CMR: A, M, G thẳng hàng.
d) CMR: AC>AD.
e, CMR: \(\widehat{DAE}>\widehat{DAB}\)
cho tam giác abc cân tại a , \(\widehat{A}=30^o\),bc=2,trên cạnh ac lấy điểm d sao cho\(AD=\sqrt{2}\)
a) tính góc abd
b)so sánh ba cạnh của tam giác dbc
Bài 1: Cho tam giác ABC vuông tại A, (AB < AC). D, E là các điểm thuộc AC, BC sao cho DE vuông góc với BC và DE=EB
a) Kẻ EH vuông góc với AB, EK vuông góc với AC. Chứng minh rằng tam giác EKD = tam giác DHB
b) Chứng minh AE là tia p/g \(\widehat{BAC}\)
Bài 2: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD (H thuộc AE). Chứng minh rằng:
a) BH = CK
b) Tam giác AHB = tam giác AKC
c) BC // HK
Bài 3: Cho tam giác ABC có AB = 24, AC = 32, BC = 40. Trên cạnh AC lấy điểm D sao cho AD = 7. Chứng minh rằng:
a) Tam giác ABC vuông
b) \(\widehat{AMB}\) = 2\(\widehat{C}\)
Cho tam giác ABC cân tại A có \(\widehat{A}\)= 300, BC = 2cm. Trên AC lấy D sao cho \(\widehat{CBD}\)=600. Tính AD
Cho tam giác ABC cân tại A và \(\widehat{A}=100^o\). Trên tia AC lấy D sao cho AD = BC. Tính số đo \(\widehat{CBD}\)
Cho tam giác ABC có \(\widehat{A}=90\)* và AB<AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của AB lấy E sao cho AE = Ac
a) Chứng minh BC = DE và BC vuông góc với DE
b) Biết \(4\widehat{B}=5\widehat{C}.Tính\widehat{AED}\)