BT1: Trên đường tròn (O; R) lấy A,B,C sao cho dây AC=R, dây BC= R √ 2, tia CO nằm giữa tia CA và CB. Tính sđ các GÓC: AOC, COB, AOB. Tính sđ cung BC
BT2: Cho tam giác ABC cân tại A, góc A nhọn. Đường tròn (O), đường kính BC cắt AB, AC tại D và E.
CM: BE = CD ⇒ góc BDE = góc DEC.
CM: cung CE = cung BD
Cho tam giác ABC vuông tại A có BC = a, AC = b, AB = c. Chọn khẳng định sai?
A. b = a.sinB = a.cosC
B. a = c.tanB = c.cotC
C. a 2 = b 2 + c 2
D. c = a.sinC = a.cosB
Cho tam giác ABC vuông tại A có BC = a, AC = b, AB = c. Chọn khẳng định sai?
A. b = a.sin B = a.cos C
B. a = c.tan B = c.cot C
C. a 2 = b 2 + c 2
D. c = a.sin C = a.cos B
Cho tam giác ABC vuông tại A có BC = a, AC = b, AB = c. Chọn khẳng định sai?
A. b = a.sinB = a.cosC
B. a = c.tanB = c.cotC
C. a 2 = b 2 + c 2
D. c = a.sinC = a.cosB
Trên đường tròn tâm O đường kính AB=2R , lấy điểm C sao cho sđ cung BC=60° . Hai tiếp tuyến với đường tròn vẽ từ B và C cắt nhau tại D . a) Tính sđ góc BOC và sđ cung nhỏ AC . b) chứng minh tứ giác OBDC nội tiếp . c) Tia AC cắt tia BD tại E . Chứng minh D là trung điểm của BE . d) Biết R=15cm . Tính diện tích hình quạt giới hạn bởi cung nhỏ AC( biết π=3,14)
Cho tam giác ABC vuông cân tại A, đường trung tuyến BM. Gọi D là chân đường vuông góc kẻ từ C đến BM và H là chân đường vuông góc kẻ từ D đến AC. Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Tại sao? AH = 2HD.
Cho tam giác ABC vuông cân tại A, đường trung tuyến BM. Gọi D là chân đường vuông góc kẻ từ C đến BM và H là chân đường vuông góc kẻ từ D đến AC. Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Tại sao? ∆ HCD ∼ ∆ ABM.
Tam giác ABC nội tiếp trong (O). Hai tia phân giác của góc A và V cắt nhau tại I và cắt (O) lần lượt tại F và E. CM:
a) sđAD =sđDC và sđAE = sđ EB
b) Tam giác DCI cân tại D và tam giác EBI cân tại E
1.trên (O) lấy các điểm lần lượt là A, B, C, D sao cho sđ cung AB =120 độ: sđ cung BC = 40 độ: sđ cung CD = 100 độ
a) tính các góc của tứ giác ABCD
b) gọi giao của AC và BD là M , AB và DC là N tính góc AMD ; góc AND
2. cho tam giác ABC nội tiếp (O). các tia phân giác góc B, góc C cắt (O) tại E; F. dây EF cắt AB, AC tại M và N
a) chứng minh AM=AN
b) gọi giao của BE và CF là I. chứng minh IE=EC