Bài 5: Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R). a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân. b. Tính độ dài các cạnh của tam giác ABC theo R. c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R).
a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân.
b. Tính độ dài các cạnh của tam giác ABC theo R.
c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R).
a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân.
b. Tính độ dài các cạnh của tam giác ABC theo R.
c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A nội tiếp trong đường tròn (O;R) có AB = R.
a, CMR: AO là tia phân giác của góc BAC
b, C/tỏ BC > R. So sánh khoảng cách từ tâm O đến các cạnh của tam giác ABC.
c, Tính theo R độ dài cạnh BC và chiều cao AH hạ từ A đến BC
Cho tam giác ABC cân nội tiếp đường tròn (O;R) có độ dài cạnh AB=AC=R ( BC khác đường kính)
a) Cm AO là tia phân giác của góc BAC
b) Cm BC > AB suy ra thứ tự khoảng cách từ tâm O đến các cạnh của tam giác ABC
c) Tính BC theo R chiều cao hạ từ A và diện tích tam giác ABC
Cho tam giác ABC có độ dài ba cạnh AB = c, AC = b, BA = a và p là nửa chu vi của tam giác. Đường tròn tâm I nội tiếp tam giác lần lượt tiếp xúc với BC, AC và AB tại D, E và F
a, Chứng minh (I) có bán kính r = (p – a)tan B A C ^ 2
b, Với B A C ^ = α, tìm số đo của góc EDF theo α
c, Gọi H, K lần lượt là hình chiếu của B,C trên EF. Chứng minh: ∆BHF:∆CKE
d, Kẻ DP vuông góc vói EF tại P. Chứng minh: ∆FPB:∆CEP và PD là tia phân giác của góc B P C ^
cho đường tròn tam O nội tiếp tam giác ABC (AB<AC) tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F.Đườn tròn tâm O' bàng tiếp trong góc BAC của tam giác ABC tiếp xúc với cạnh BC và phần kéo dài của các cạnh AB,AC tương ứng tại các điểm P,M,N.
a)chứng minh BP=CD
b)trên đường thawngrMN lấy các điển I,K sao cho CK//AB,BI//AC. chứng minh các tứ giác BICE,BKCF là hình thang cân
c)gọi (S) là đường tròn đi qua ba điểm I,K,P.chứng minh(S) tiếp xúc với các đường thẳng BC,BI,CK
Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. (Đã tính AP=1cm) b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR
Cho tam giác ABC cân tại A, góc A = 45 độ, nội tiếp đường tròn (O;R). Tính các cạnh của tam giác ABC theo R