Theo tính chất tia phân giác của góc ta có:
Do tam giác ABC cân tại A nên AB = AC nên:
Suy ra : DB = DC.
Mà DB + DC = BC nên:
Chọn đáp án C
Theo tính chất tia phân giác của góc ta có:
Do tam giác ABC cân tại A nên AB = AC nên:
Suy ra : DB = DC.
Mà DB + DC = BC nên:
Chọn đáp án C
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
Cho hình thang ABCD ( AB//CD) có CD = AD + BC. Gọi K là giao điểm của tia phân giác góc A với đáy CD. Chứng minh: a) AD = DK b) Tam giác BKC cân tại C c) BK là tia phân giác góc B
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho hình thang ABCD (AD//BC),(AD>BC) có AC vuông góc với CD,AC là tia phân giác góc BAD và ACB = 30 độ
a) CM Tam giác ABC cân tại B
b)Tính các góc của hình thang
c)Tia AB cắt DC tại I. CM Tam giác BCI đều và tam giác ADI cân tại A
d) Biết BC = 4cm tính chu vi của hình than
Cho tam giác ABC có đường cao AH và đường phân giác AD biết AB = 8cm, BC = 9cm, AC = 10cm.
a) Tính BD và CD
b) Đường trung trực của BC tại M cắt AD tại K và cắt AC tại E.Chứng minh tam giác DBK đồng dạng tam giác DAC.
c) Gọi S là trung điểm của AK.Chứng minh BS là tia phân giác của góc ABC.
d) Gọi F là giao điểm của BE và AD.Chứng minh F là trung điểm của AD.
Cho tam giác ABC có đường cao AH và đường phân giác AD biết AB = 8cm, BC = 9cm, AC = 10cm.
a) Tính BD và CD
b) Đường trung trực của BC tại M cắt AD tại K và cắt AC tại E.Chứng minh tam giác DBK đồng dạng tam giác DAC.
c) Gọi S là trung điểm của AK.Chứng minh BS là tia phân giác của góc ABC.
d) Gọi F là giao điểm của BE và AD.Chứng minh F là trung điểm của AD.
Bài 1: Cho hình thang ABCD có đáy là AD có: ^A - ^B = 20 độ, ^D = 2 lần ^C. Tính các góc của hình thang ?
Bài 2: Cho hình thang ABCD có đáy là AB và CD bằng AD + BC. Gọi K là giao điểm tia phân giác của ^A với đáy CD. Chứng minh:
a) AD = DK ?
b) Tam giác BCK cân tại C ?
c) Tia phân giác của góc B ?
- Giúp mình nha mình đang gấp, cảm ơn mọi người
Cho hình thang ABCD ( AB//CD ) có CD = AD + BC . Gọi K là giao điểm của tia phân giác góc A với đáy CD . Chứng minh :
a) AD=DK
b) tam giác BKC cân tại C
c) BK là tia phân giác góc B
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.