Cho tam giác ABC cân tại A có góc A = 120 độ ; BC = 15 cm. Đường vuông góc với AB tại A cắt BC ở D
a, C/minh: DA = DC
b, Tính độ dài BD
Cho tam giác ABC vuông tại A có AB = 6 cm AC = 8 cm Tính độ dài BC Ê đường phân giác của B cắt AC tại D vẽ DE vuông góc BC H thuộc BC Chứng minh tam giác ABD bằng tam giác AC BD kẻ HB cắt ba tại f chứng minh BD vuông góc với c f
cho tam giác ABC cân tại A ( A < 90 độ ) . Kẻ BD vuông góc Ac ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) , BD và CE cắt nhau tại H . a, CM : BD = CE . b, CM : tam giác BHC cân . c, CM : AH là đường trung trực của BC . d, TRên tia BD lấy điểm K sao cho D là trung điểm của BK . So sánh ECB và DKC
Câu 1:Cho tam giác ABC cân tại A, góc A=120 độ, BC=6 cm. Đường vuông góc với AB tại A cắt BC ở D. Trên tia đối của tia AD lấy K sao cho AD=Ak. Tính BD
Câu 2:Cho tam giác ABC vuông tại A có góc B= 30 độ. Trên tia đối của tia AC lấy D sao cho AD=AC.
a) CM: tam giác ABD= tam giác ABC
b) tam giác BCD là tam giác đều
Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:
A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^
Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
C \(\sqrt{12}cm\)
D. 156cm
Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm
Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng
A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
D \(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp
Cho tam giác ABC vuông tại A ( AB < AC ) . Trên cạnh BC lấy điểm D sao cho BD = BA . Đường vuông góc với BC tại D cắt AC ở E
a , Chứng minh AE = DE
b , Giả sư AB/3 = AC/4 , BC = 10 cm .Tính độ dài BD
c , Đường phân giác góc ngoài tại đỉnh C cắt đường BE ở K . Tính số đo góc BAK
Cho tam giác ABC cân tại A , góc A = 120 độ , BC = 6 cm. Đương vuông góc vs AB tại A cắt BC ở D. Tính độ dài BD
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CM : tam giác ACM vuông
Cho tam giác ABC vuông tại A có AB lớn hơn AC So sánh góc B và góc C Tính độ dài cạnh AB biết BC = 10 cm AC = 6 cm trên cạnh BC lấy điểm D sao cho BD = AB đường thẳng vuông góc với BC tại D cắt AC ở E Chứng minh rằng tam giác ABE =tam giác DBE và AE