Cho tam giác ABC cân tại A, đường cao AH. Đường trung trực của cạnh AC cắt AH tại I. Chọn khẳng định đúng trong các khẳng định sau:
A. IA = IB = IC
B. Điểm I là trọng tâm tam giác ABC
C. Điểm I cách đều 3 cạnh của tam giác
D. Không có khẳng định nào đúng
Cho tam giác cân (không đều) ABC có AB = AC. Hai đường trung trực của hai cạnh AB, AC cắt nhau tại O. Khi đó khẳng định nào sau đây là đúng?
(A) OA > OB;
(B) ∠(AOB) > ∠(AOC) ;
(C) AO ⊥ BC;
(D) O cách đều ba cạnh của tam giác ABC.
1. Cho tam giác ABC cân tại đỉnh A trung trực của cạnh AC cắt CB tại điểm D (D nằm ngoài đoạn BC) trên tia đối tia AD lấy E sao cho AE=BD chứng minh tam giác DCE cân gợi ý cần chứng minh CD=CE
2.cho tam giác ABC có AB < AC lấy điểm E trên cạnh CA sao cho CE=BA các đường trung trực của các đoạn thẳng BE và CA cắt nhau ở I a) chứng minh tam giác AIB=tam giác CIE
b) chứng minh tam giác AI là tia phân giác của góc BAC
Giups mk với !
4)cho tam giác ABC ( AB <AC ). Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Các đường trung trực của các đoạn thẳng BC và AD cắt nhau tại I. chứng minh rằng:
a) IA=ID;IB=IC
b) tam giác IAB= tam giác IDC
c)AI là tia phân giác cảu góc BAC
5)cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\). chứng minh rằng ta có tỉ lệ thức sau : \(\left(\dfrac{a+b}{c+d^{ }}\right)^2\)= \(\dfrac{a^2+b^2}{c^2+d^2}\)
1. Cho tam giác ABC cân tại đỉnh A, trung trực của cạnh AC cắt CB tại điểm D (D nằm ngoài đoạn BC). Trên tia đối tia AD lấy E sao cho AE=BD. Chứng minh tam giác DCE cân. (gợi ý: Cần chứng minh CD=CE).
2. Cho tam giác ABC có AB<AC, lấy điểm E trên cạnh CA sao cho CE=BA, Các đường trung trực của các đoạn thẳng BE và CA cắt nhau ở I.
a, Chứng minh: tam giác AIB= tam giác CIE
b, Chứng minh: AI là tia phân giác của góc BAC.
Các bạn ơi giúp mình với mình đang cần gấp lắm! pleas!!!
1. Cho tam giác ABC cân tại đỉnh A trung trực của cạnh AC cắt CB tại điểm D (D nằm ngoài đoạn BC) trên tia đối tia AD lấy E sao cho AE=BD chứng minh tam giác DCE cân gợi ý cần chứng minh CD=CE
2.cho tam giác ABC có AB < AC lấy điểm E trên cạnh CA sao cho CE=BA các đường trung trực của các đoạn thẳng BE và CA cắt nhau ở I
a) chứng minh tam giác AIB=tam giác CIE
b) chứng minh tam giác AI là tia phân giác của góc BAC
Mấy bạn giúp mình nha mai mình học rồi
Cho tam giác ABC vuông tại A, AB < AC. Đường trung trực của đoạn thẳng AB cắt BC tại I.
a)CM tam giác AIB và tam giác AIC là các tam giác cân.
b)Từ I kẻ đường thẳng vuông góc với BC, cắt tia BA và AC tại M và N, tia BN cắt CM tại E. CM EB vuông góc với MC.
c)CM EA song song với BC.
Các câu hỏi sau đây đúng hay sai.
a. Trong một tam giác, đối diện với cạnh nhỏ nhất bao giờ cũng là góc nhọn.
b. Trực tâm của tam giác cách đều ba đỉnh của nó.
c. Nếu tam giác có một đường phân giác đồng thời là đường cao thì tam giác
đó là tam giác cân.
2. Chọn chữ cái đứng trước phương án đúng.
a. Bộ ba đoạn thẳng nào có độ dài sau đây có thể là ba cạnh của một tam giác.
A. 2cm; 7cm; 4cm
B. 15cm; 13cm; 6cm
C. 11cm; 7cm; 18cm
D. 5cm; 7cm; 13cm
b. Chu vi tam giác cân ABC có AC = 9cm, BC = 4cm là số nào trong các số d-
ới đây:
A. 17cm B. 18cm C. 21cm D. 22cm
c. Cho ABC có đường trung tuyến AM, trọng tâm G. Trong các khẳng định
sau khẳng định nào đúng.
A. GM/GA = 1/3
B. MG/MA = 1/3
C. AM/MG =2
Cho tam giác ABC có AB bằng AC . Kẻ tia phân giác của góc A cắt cạnh BC tại I. Chứng minh:
a) tam giác AIB = tam giác AIC ?
b) AI là đường trung trực của đoạn thẳng BC?
vẽ hình nữa nhé