Cho tam giác ABC cân tại A . Kẻ BD vuông góc với AC,CE vuông góc với AB. Gọi I là giao điểm của BD và CE
a/CMR: BE =CD
b/CMR:AI là p/g của góc BAC
c/ Vẽ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. H là giao điểm của Bx,Cy.CMR:HB=HC,AH là trung trực của BC
Bài 1: Cho tam giác ABC cân tại A có góc A< 90 độ. Tia Bx vuông góc AB cắt tia AC tại D , tia Cy vuông góc AC cắt tia AB tại E . Gọi giao điểm của hai tia Bx Cy là I . Chứng minh: a) AD =AE BD= CE, b) Tam giác EID cân, góc BAI= góc CAI c) BC // ED và AI vuông góc ED , d) Tìm điều kiện của tam giác ABC sao cho góc IED =30 độ
Cho tam giác ABC cân tại A. Vẽ tia Bx vuông góc với AB. Vẽ tia Cy vuông góc với AC. M là giao điểm của Bx và Cy.
a) Chứng minh góc AMB bằng góc AMC
b) Chứng minh AM là đường trung trực của đoạn thẳng BC.
Cho tam giác ABC cân tại A, kẻ BH vuông góc với AC (H thuộc AC) , kẻ CK vuông góc với AB (K thuộc BC) .
a) Chứng minh AH=AK.
b) Gọi I là giao điểm của BH và CK. Chứng minh AI là đường trung trực của HK.
c) Kẻ Bx vuông góc với AB tại B, gọi E là giao điểm của Bx với AC. Chứng minh BC là phân giác của góc HBE.
d) So sánh CH với CE
Cho tam giác ABC cân tại A ( góc A < 90 độ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: tam giác ABD = tam giác ACE.
b) Chứng minh: tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh: góc ECB = góc DKC.
Cho tam giác ABC cân tại A, góc A tù, BD, CE lần lượt là tia phân giác của góc B,C. BH, CK lần lượt vuông góc với CE, BD tại H,K. - ED//BC - Gọi I là giao điểm của BD và CE, chứng minh AI là tia phân giác của góc A - BH=CK - Vẽ các tia Bx vuông góc với BD, Cy vuông góc với CE. Bx và Cy cắt nhau tại F, chứng minh A,F,I thẳng hàng
Cho tam giác ABC cân tại A ( AB > BC ) . Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E
a) Chứng minh rằng : tam giác DAB = tam giác EAC và tam giác ADE cân
b) Gọi H là giao điểm của BD và CE . Chứng minh rằng : AH là tia phân giác của góc BAC
c) Chứng minh rằng : AH > CH
Cho ∆ABC cân tại A. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. a,Chứng minh: ∆ABD=∆ACE Gọi I là giao điểm của BD và CE.
b,Chứng minh: AI là tia phân giác góc BAC.
c,Chứng minh: AI là đường trung trực của đoạn thẳng BC.
d,Tính :góc BIC ? Biết góc BAC = 50 độ
mọi người vẽ cả hình nữa nhé,cảm ơn mn
Cho tam giác ABC cân tại A ( A<90 ), vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm cuả BD và CE.
a/ Chứng minh : tam giác ABD = tam giác ACE
b/ Chứng minh tam giác AED cân
c/ chứng minh AH là đường trung trực của ED
d/ trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh góc EBC = góc DKC