Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thiên thần

cho tam giác ABC cân có AB=AC=10cm, BC=12cm.Kẻ AH vuông góc với BC tại H.

a) Chứng minh H là trung điểm BC và tính độ dài AH

b)Trện tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM=CN. chứng minh rằng tam giác AMN cân.

c)Từ B kẻ BE vuông góc với AM tại E, từ C kẻ CF vuông góc với AN tại F. Chứng minh góc MBE bằng góc NCF.

d) Gọi K là giao điểm của BE và CF. Chứng minh A,H,K thẳng hàng.

Nhật Hạ
26 tháng 2 2020 lúc 17:10

a, Xét △BAH vuông tại H và △CAH vuông tại H

Có: AH là cạnh chung

       AB = AC (gt)

=> △BAH = △CAH (ch-cgv)

=> BH = CH (2 cạnh tương ứng)

Mà H nằm giữa B, C

=> H là trung điểm BC

Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2  

=> AH2 = 102 - 62 

=> AH2 = 64

=> AH = 8 (cm)

b, Ta có: MH = MB + BH và HN = HC + CN

Mà BH = HC (cmt) ; MB = CN (gt)

=> MH = HN

Xét △MHA vuông tại H và △NHA vuông tại H

Có: AH là cạnh chung

      MH = HN (cmt)

=> △MHA = △NHA (2cgv)

=> HMA = HNA (2 góc tương ứng)

Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A

c, Xét △MBE vuông tại E và △NCF vuông tại F

Có: EMB = FNC (cmt)

      MB = CN (gt)

=> △MBE = △NCF (ch-gn)

=> MBE = NCF (2 góc tương ứng)

d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)

=> AH là phân giác của MAN

Ta có: AE + EM = AM và AF + FN = AN 

Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)

=> AE = AF

Xét △EAK vuông tại E và △FAK vuông tại F

Có: AK là cạnh chung

       AE = AF (cmt)

=> △EAK = △FAK (ch-cgv)

=> EAK = FAK (2 góc tương ứng)

=> AK là phân giác EAF => AK là phân giác MAN

Mà AH là phân giác của MAN

=> AK ≡ AH 

=> 3 điểm A, H, K thẳng hàng

Khách vãng lai đã xóa

Các câu hỏi tương tự
thiên thần
Xem chi tiết
Nguyễn Kiều Trang
Xem chi tiết
đặng lan
Xem chi tiết
đặng lan
Xem chi tiết
Trương Minh Duy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyen Thi Xuan
Xem chi tiết
LÊ NGỌC ÁNH
Xem chi tiết
Song tử cá tính
Xem chi tiết