cho tam giác abc cân tại a h là trung điểm của bc. kẻ hm vuông góc ab ( m thuộc ab), hn vuông góc với ac (n thuộc ac)
a, chứng minh tam giác ahb = tam giác ahc
b, chứng minh tam giác hmn cân
c, chứng minh mn//bc
d, gọi e là giao điểm của ab và hn, f là giao điểm của ac và hm, i là giao điểm của ah và ef, chứng minh điểm h cách đều 3 cạnh tam giác mni
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E)
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E) a)Chứng minh tam giác ABD bằng tam giác ACE b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E)
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
Cho tam giác ABC cân ở A. Trên cạnh BC lấy M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc AB; NF vuông góc AC ( E thuộc AB; F thuộc AC ) EM cắt FN tại H. Chứng minh:
a) Tam giác ABM = tam giác CAN
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC
c) Tam giác MEB = tam giác NFC
d) EF // BC
e) A, D, H thẳng hàng
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cho tam giác ABC cân ở A. Trên cạnh BC lấy M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc AB; NF vuông góc AC ( E thuộc AB; F thuộc AC ) EM cắt FN tại H. Chứng minh:
a) Tam giác ABM = tam giác CAN
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC
c) Tam giác MEB = tam giác NFC
d) EF // BC
e) A, D, H thẳng hàng
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cho tam giác ABC cân tại A, đường cao AH (H thuộc BC)
a, Chứng minh Tam giác ABH= Tam giác ACH
b,Từ H kẻ MH, HN lần lượt vuông góc với AB và AC (M thuộc AB) (N thuộc AC). Chứng minh HM=HN
c, Gọi G là giao điểm của hai trung tuyến BE và CF của tam giác ABC (E thuộc AC) (F thuộc AB)
Làm nhanh mk tick!
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E)
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
mọi người giúp e làm ý c) với ạ,
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân