cho tam giác ABC ; các tia phân giác AD ,BE,CF gặp nhau tại I
a)Tính IAC+IBC+ICA
b)Kẻ IH vuông góc với BC(H thuộc BC). Chứng minh BIH=CID
Cho tam giác ABC, các phân giác AD,BE,CF cắt nhau tại I.
a. Tính góc IAC+IBC+ICA
b. Kẻ IH vuông góc BC (H thuộc BC). Chứng minh góc BIH=CID
cho tam giác ABC có AB=AC.Tia phân giác của góc A cắt BC tại M
a) CMR: Tam giác AMB=tam giác AMC
b)K là một điểm bất kì trên đoạn thẳng AM, đường thangwrCK tắt cạnh AB tại I. vẽ IH vuông góc với BC tại H. CMR \(\widehat{BAC=2\widehat{BIH}}\)
Cho \(\Delta ABC\) ( AB < AC ). Hai đường phân giác của góc B và góc C cắt nhau tại I. Hai đường phân giác ngoài của \(\Delta ABC\) cắt nhau tại K.
a, C/minh: \(\widehat{BIC}=90+\dfrac{1}{2}\widehat{A}\)
b, C/minh: Điểm K cách đều 3 đường thẳng AB; BC; CA
c, C/minh: 3 điểm A; I; K thẳng hàng
d, Kẻ \(IH\perp BC\) tại H , AI cắt BC ở D . C/minh: \(\widehat{BIH}=\widehat{CID}\)
Cho \(\Delta ABC\) cân tại B, có \(\widehat{ABC}\)=800 . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}\) =100 và \(\widehat{ICA}\)=300 . Tính số đo \(\widehat{AIB}\)?
Cho tam giác ABC (AB > AC), M là trung điểm của BC. Đường thẳng đi qua M vuông góc với tia phân giác của góc A tại H cắt cạnh AB, AC lần lượt tại E và F. CMR:
a) EH = HF
b) \(2\widehat{BME}=\widehat{ABC}-\widehat{B}\)
c) \(\frac{FE^2}{4}+AH^2=AE^2\)
d) BE = CF
Tam giác ABC có AB >AC. Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân của góc A, cắt tia phân giác tại H, cắt AB,AC lần lượt tại E và F. CMR:
a) BE=CF
b) AE=\(\frac{AB+AC}{2}\) ; BE=\(\frac{AB-AC}{2}\)
c) \(\widehat{BME}=\frac{\widehat{ACB}-\widehat{B}}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH, từ H kẻ đường thẳng vuông góc với AC tại K. Vẽ tia phân giác của \(\widehat{HAC}\)cắt HK tại I. từ I kẻ đường thẳng song song với BC cắt AC tại D. Chứng minh rằng: \(\widehat{AIH}=\widehat{AID}\)
Cho tam giác ABC. Gọi AD là đường phân giác của tam giác ABC, I là giao điểm của 3 đường phân giác của tam giác và H là hình chiếu của I trên cạnh BC. Chứng minh:
a, \(\widehat{BIH}=\widehat{CID}\)
b. \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\)
làm nhanh giúp mk vs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!