Cho tam giác ABC với cá đường cao không nhỏ hơn 1 CM:
\(S_{ABC}\ge\frac{\sqrt{3}}{3}\)
cho tam giác ABC có các đường cao nhỏ hơn hoặc bằng 1
CMR \(s_{abc< =\frac{1}{\sqrt{3}}}\)
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H.
a)CMR:
Tam giác AEF đồng dạng với tam giác ABC. \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b)CMR:\(S_{DÈF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
c)Cho biết AH=k.HD. CMR: \(\tan B.\tan C=k+1\)
d)CMR:\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Cho tam giác ABC có diện tích S,các đường cao không nhỏ hơn 1 cm.CMR \(S\ge\frac{\sqrt{3}}{3}\left(cm^2\right)\)
Cho tam giác ABC có diện tích là S, các đường cao không nhỏ hơn 1cm. CMR: S lớn hơn hoặc bằng \(\frac{\sqrt{3}}{3}\)
Cho tam giác ABC có diện tích S, có các đường cao không nhỏ hơn 1cm . Chứng minh S \(\ge\)\(\frac{\sqrt{ }}{ }\)
Tam giác ABC có 3 góc nhọn. Gọi AH,BI,CK là các đường cao. CMR: \(\frac{S_{HIK}}{S_{ABC}}=1-\left(\cos^2A+cos^2B+cos^2C\right)\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
Cho tam giác ABC, các đường phân giác AD, BE, CF.
CMR : \(S_{DEF}\le\frac{1}{4}S_{ABC}\)