Cho tam giác ABC, các đường cao BH và CK cắt nhau tại E. Qua B kẻ đường thẳng Bx vuông góc với AB. Qua C kẻ đường thẳng Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D.
a, chứng minh tứ giác BDCE là hình bình hành
b, gọi M là trung điểm của BC, chứng minh M là trung điểm của ED
c, Tam giác ABC phải thỏa mãn điều kiện gì để DE đi qua D
a,
+,Có CK vuông góc AB
BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.