Cho tam giác ABC(AC>AB) đường phân giác AD. I là giao điểm 2 tia phân giác của góc B và góc C. Vẽ IH vuông góc với BC,H thuộc BC
a)biết góc DIC=30 độ. Tính góc ABC
b)Chứng minh góc BIH=CID
1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Cho tam giác ABC [AB>AC]. AD là tia phân giác của góc A . I là giao điểm của 3 đường phân giác trong tam giác ABC, từ I hạ IH vuông góc BC[H thuộc BC]. CMR:góc BIH = góc CID
B1: Cho tam giác ABC có góc C bằng 30 độ. Tia phân giác của góc B và đường phân giác góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE
B2: Cho tam giác ABC có I là giao điểm các tia pg của góc B và góc C. Gọi D là giao điểm của AI và BC. Kẻ IH vuông góc BC (H thuộc BC) CMR: góc BIH = góc CID
B3: Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. (H thuộc BC), các tia pg của góc HAC và AHC cắt nhau ở I. Tia phân giác của góc HAB cắt BC ở D. Cm: CI điq ua trung điểm của AD
Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi D là giao điểm của AI và BC. Kẻ IH vuông góc với BC (H thuộc BC). Chứng minh:
a) AD là tia phân giác của A ^ .
b) C I D ^ = 90 ° − B ^ 2
c) B I H ^ = C I D ^ .
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
Cho tam giác ABC có góc A=60 độ, AB<AC, đường cao BH ( H thuộc AC)
a) So sánh góc ABC với ACB. Tính góc ABH
b) Vẽ AD là phân giác của góc A ( D thuộc BC) . Vẽ BI vuông góc với AD tại I. Chứng minh tam giác AIB = tam giác BHA
c) Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
d) Chứng minh DC< DB
cho tam giác ABC ; góc A bằng 60độ; AB<AC vẽ đường cao BH; H thuộc AB
a, so sánh góc ABC và góc ACB. tính góc ABH
b, Vẽ AD là phân giác cyar góc A, D thuộc BC, vẽ BI vuông góc với AD tại I. chứng minh : tam giác AIB = tam giác BHA
c, vẽ BI cắt AC tại E chứng minh tam giác ABE đều
d, Chứng minh DC > DB
Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.