Cho tam giác ABC có AC > AB. Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB và BC lần lượt tại D và E. Gọi M và N theo thứ tự là trung điểm của cạnh AC và BC. Gọi K là giao điểm của MN và AI. Gọi H là giao điểm của DE và CI. Chứng minh rằng:
a) Bốn điểm I, E, K, C cùng thuộc một đường tròn.
b) Ba điểm D, E, K thẳng hàng.
c) Bốn điểm A, H, K, C cùng thuộc một đường tròn.
Cho tam giác ABC nhọn(AB<AC).Đường tròn tâm I nội tiếp Tam giác ABC và tiếp xúc với các cạnh AB,BC tại D,E.Gọi M,N là trung điểm của AC,BC.Gọi K là giao điểm của MN và AI.Cmr:
a) bốn điểm I,E,K,C thuộc cùng một đường tròn
b) ba điểm D,E,K thẳng hàng
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
Cho tam giác ABc , lấy D trên cạnh BC , vẽ đường tròn tâm I qua D tiếp xúc với AB tại B. Vẽ đường tròn tâm K qua D tiếp xúc với AC tại C . Gọi M là giao điểm của hai đường tròn đó
1. CM : tứ giác ABMC nội tiếp
2. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC . CM : 3 đường tròn tâm I, tâm K và tâm O đồng quy
3. CM : MD di chuyển qua 1 điểm cố định
Cho tam giác ABC nội tiếp đường tròn (O), góc A < 90°. Các đường phân giác trong cắt nhau tại I. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn tại M, N, P. Chứng minh:
a) Tam giác NIC cân tại N
b) I là trực tâm tam giác MNP
c) Gọi E là giao điểm của MN và AC, F là giao điểm của PM và AB. Chứng minh 3 điểm E, I, F thẳng hàng
d) Gọi K là trung điểm BC, giả sử BI ⊥ IK, BI = 2IK. Tính góc A của tam giác ABC
Cho tam giác ABC. Điểm I là tâm đường tròn bàng tiếp trong góc A của tam giác. Đường tròn này tiếp xúc với AB,AC,BC tại K,L,M. LM∩BJ≡F;KM∩CJ≡G. Gọi S,T lần lượt là giao điểm của AF,AG với BC. CMR: M là trung điểm ST