Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Anh Thắng

Cho tam giác ABC (AB<AC) vuông tai A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC. Chứng minh rằng: \(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 22:44

Hệ thức lượng: \(AH^2=BH.CH\)

Hai tam giác vuông BEH và HFC đồng dạng: \(\Rightarrow\dfrac{BE}{FH}=\dfrac{EH}{CF}\Rightarrow BE.CF=EH.FH\)

Hai tam giác vuông AEH và CFH đồng dạng \(\Rightarrow\dfrac{AH}{CH}=\dfrac{EH}{FH}\Rightarrow AH.FH-CH.EH=0\)

 Hai tam giác vuông BEH và AFH đồng dạng \(\Rightarrow\dfrac{BH}{AH}=\dfrac{EH}{FH}\Rightarrow EH.AH-BH.FH=0\)

Ta có: \(\left(BE\sqrt{CH}+CF\sqrt{BH}\right)^2=BE^2.CH+CF^2.BH+2BE.CF.\sqrt{BH.CH}\)

\(=BE^2.CH+CF^2.BH+2BE.CF.AH\)

\(=\left(BH^2-EH^2\right)CH+\left(CH^2-FH^2\right)BH+2BE.CF.AH\)

\(=BH.CH\left(BH+CH\right)-EH^2.CH-FH^2.BH+2EH.FH.AH\)

\(=AH^2.BC+EH\left(AH.FH-EH.CH\right)+FH\left(AH.EH-FH.BH\right)\)

\(=AH^2.BC=\left(AH\sqrt{BC}\right)^2\)

\(\Rightarrow BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 22:45

undefined


Các câu hỏi tương tự
Châu Trần
Xem chi tiết
nguyễn thị hương
Xem chi tiết
Nguyên Miou
Xem chi tiết
Pham Trong Bach
Xem chi tiết
mary
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Quỳnhh Hương
Xem chi tiết
Quỳnhh Hương
Xem chi tiết