a) gọi giao điểm của đường trung trực (ứng với BC) và cạnh BC là M, gọi giao điểm của đường trung trực (ứng với AD) và cạnh AD là N
Xét 2 tam giác vuông MIB và MIC có:
MB=MC (giả thiết)
MI là cạnh chung
=> Tam giác MIB=MIC ( 2 cạnh góc vuông)
=> BI=IC (2 cạnh tương ứng)
Xét 2 tam giác vuông NIA và NID có:
NA=ND (giả thiết)
NI là cạnh chung
=> Tam giác NIA=NID (2 cạnh góc vuông)
=> IA=ID ( 2 cạnh tương ứng)
Xét 2 tam giác AIB và DIC có:
IA=ID (cmt)
IB=IC (cmt)
AB=CD ( gt)
=> Tam giác AIB = DIC (cạnh-cạnh-cạnh)
b) Ta có : góc ABI = DCI ( vì tam giác AIB=DIC)
=> 180o - ABI = 180o - DCI
=> EBA - ABI = NCD - DCI
=> góc EBI = NCI
Xét hai tam giác vuông EIB và NIC có:
IB=IC(cmt)
góc EIB=NCI ( cmt)
=> Tam giác EIB=NIC( cạnh huyền - góc nhọn)
=> IE=IN ( 2 cạnh tương ứng)
Mà I nằm trong góc EBC
=> I nằm trên tia phân giác của góc EBC
Vậy AI là tia phân giác của góc BAC
c) Ta có: EB=NC ( vì tam giác EIB=NIC)
mà AB=CD ( giả thiết)
=> AB+EB= NC+CD
=> AE=ND
mà AN = ND = 1/2AD
=> AE= AN = 1/2 AD
d) Trong tam giác EIB có BI là cạnh huyền
=> IE<IB
Cho mik nhan -_o mik viết cái nì mỏi lắm óh