Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
✰Nanamiya Yuu⁀ᶜᵘᵗᵉ

Cho tam giác ABC (AB<AC). Trên tia BA lấy điểm D sao cho BD=BC. Nối C vs D. Tia phân giác của góc B cắt cạnh AC và CD theo thứ tự E và I.
a) CM tam giác BID= tam giác BIC
b) CM EC=ED
c) Kể AH vuông góc vs CD tại điểm H, CM AH//BI
d)Biết số đo góc ABC = 70 độ , tính số đo góc BCD và DAH

•  Zero  ✰  •
3 tháng 3 2020 lúc 22:03

https://h.vn/hoi-dap/question/165435.html

THAM KHẢO NHA

# mui #

Khách vãng lai đã xóa
Yêu nè
4 tháng 3 2020 lúc 8:33

A I B C D H E 1 2 Hình ảnh vẫn chỉ mang tính chất minh họa

a) +) Xét \(\Delta\)BID và \(\Delta\)BIC có

BI : cạnh chung

\(\widehat{B_1}=\widehat{B}_2\) ( gt)

BD = BC ( gt)

=> \(\Delta\)BID = \(\Delta\)BIC (c-g-c)

b) +) Xét \(\Delta\)BEC và \(\Delta\) BED có

BE: cạnh chung

\(\widehat{B_1}=\widehat{B}_2\)  ( gt)

BC = BD ( gt)
=> \(\Delta\)BEC = \(\Delta\)BED (c-g-c)

=> EC = ED ( 2 cạnh tương ứng )

c) Theo câu a ta có  \(\Delta\)BID = \(\Delta\)BIC

=> \(\widehat{BID}=\widehat{BIC}\)  ( 2 góc tương ứng )    (1)

+)Mà \(\widehat{BID}+\widehat{BIC}=180^o\)   (2) (  2 góc kề bù ) 

Từ (1) và (2) => \(\widehat{BID}=\widehat{BIC}=\frac{180^o}{2}=90^o\)

+) Lại có BI cắt CD tại I  ( gt)

=> BI \(\perp\) CD tại I
+) Mặt khác ta có 

\(\hept{\begin{cases}BI\perp CD\left(cmt\right)\\AH\perp CD\left(gt\right)\end{cases}}\)

=> BI // AH ( đpcm)

d) Ta có \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\) 

Mà \(\widehat{ABC}=70^o\) ( gt)

=> \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}=\frac{70^o}{2}=35^o\)

+)Theo câu c ta có  BI // AH

=> \(\widehat{HAD}=\widehat{B_1}=35^o\)  ( 2 góc so le trong )

+) Xét \(\Delta\)BIC vuông tại I

\(\Rightarrow\widehat{B_2}+\widehat{BCD}=90^o\) ( tính chất tam giác vuông )

\(\Rightarrow\widehat{BCD}+35^o=90^o\)

\(\Rightarrow\widehat{BCD}=55^o\)

Vậy \(\widehat{DAH}=35^o;\widehat{BCD}=55^o\)

Xong rồi nha ___ mỏi hết cả tay rồi

Chúc bạn tui học tốt

Takiagawa Miu_

Khách vãng lai đã xóa

Các câu hỏi tương tự
zZz Song ngư zZz Dễ thươ...
Xem chi tiết
super saiyan vegito
Xem chi tiết
Neo Amazon
Xem chi tiết
Chămm nè
Xem chi tiết
Linh Chii
Xem chi tiết
Chămm nè
Xem chi tiết
Hazzz “Joker” Joker123 _
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết