Cho tam giác ABC (AB<AC) nội tiếp đt(O), đường cao AH (H thuộc BC ). AH cắt đt ở D, AD cắt đt ở E.
a) So sánh 2 góc BAH và DAC.
b) Tứ giác BCED là hình gì ? Vì sao?
cho tam giác ABC(AB<AC)nội tiếp đường tròn O,AH là đường cao .đường tròn tâm k đk AH cắt AB,AC ,(o) lần lượt tại D,E,I;AI cắt BC tại M.chứng ninh:
a.tứ giác AEHD nội tiếp
b.AB nhân AD=AE nhân AC và tứ giác BCED nội tiếp
c.OK vuông góc với AM => K là trực tâm của tam giác MAO
d.OA vuông góc với DE => 3 điểm M,D,E thẳng hàng
Cho tam giác ABC nội tiếp đường tròn tâm O,đường kính BC , đường cao AH
1> Cho BH = 9,HC=16.Tính AH,AB,AC và bán kính đường tròn nội tiếp tam giác ABC
2>Vẽ đường tròn tâm I,đường kính AH. Đường tròn tâm I cắt AB ở D,cắt AC ở E và cắt đường tròn tâm O ở K ,K khác A.
Chứng minh AEHD là Hình Chữ Nhật và D,I,E thẳng hàng
3> Chứng minh 0A vuông góc với DE
4>AK cắt BC ở F.Chứng minh F,D,E thẳng hàng
Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn tâm O. Vẽ đường cao AH. Gọi D,E lần lượt là hình chiếu vuông góc của H lên AB,AC
a, chứng minh: OA vuông góc vs DE
b, DE cắt BC tại K. CM: KH^2=KB*KC
c, Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCED. Chứng minh: F,H,I thẳng hàng
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R) đường cao AH của tam giác cắt đường tròn tâm O tại D . Từ D vẽ đường thẳng song song với BC cắt đường tròn O tại E .CM : BCED là hình thang cân
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O) có đường kính AD và AH vuông góc với BC tại H, tia AH cắt (O) ở E. Chứng minh tứ giác BCDE là hình thang cân.
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về