cho tam giác nhọn ABC (AB<AC) , ba đường cao AD , BE , CF cắt nhau tại H .Goi I là giao điểm của EF va AH .Đường thẳng qua I và song song BC cắt AB ,BE lần lượt tại P và Q
a, CMR tam giác AEF đồng dạng với tam giác ABC
b, CM IP=IQ
c,Gọi M là trung điểm AH .CM I là trực tâm tam giác ABC
BÀI 4. Cho tam giác ABC, đường phân giác của góc B và đường phân giác của C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E, F.
a) Chứng mình BEI, CFI là các tam giác cân.
b) Chứng minh BE + CF = EF.
c) Gọi M là trung điểm của IB, N là trung điểm của IC, các đường thẳng EM, FN cắt nhau tại O. Chứng minh OB = OC.
d) Chứng minh ba điểm A, I, O thẳng hàng.
cho tam giác abc nhọn , kẻ các đường cao ad,be,cf cắt nhau tại h
a,chứng minh : h cách đều 3 cạnh tam giác def
b,gọi q là giao điểm của ad và ef . Chứng minh hq.ad=aq.hd
c,chứng minh be.cf + ae.af = ab.ac
d, qua a kẻ đường thẳng song song với cf cắt be tại k và kẻ đường thẳng song song với be cắt cf tại n,gọi m là trung điểm bc.Chứng minh am vuông góc nk
mọi người giúp mình câu b,c,d nhé ! mình cảm ơn
Cho tam giác ABC nhọn. Kẻ các đường cao BE, CF giao nhau tại H.
a) Chứng minh: AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC.
b) Qua B kẻ đường thẳng song song với CF cắt tia AH tại M. Ah cắt BC tại D. Chứng minh: BD^2=AD.DM.
c) Cho góc ACB = 45 độ và kẻ AK vuông góc EF tại K. Tính tỉ số giữa S AFH/ S AKE.
d) Chứng minh: AB.AC = BE.CF + AE. AF
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HB là phân giác của IHK
Câu 4(3,0 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Gọi M là giao điểm của EF và BC. Qua B kẻ đường thẳng song song với AC cắt AM tại P và AD tại Q.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Chứng minh DFC = EFC.
c) Chứng minh BP = BQ.
cho tam giác abc nhọn, không cân (ab< ac), các đường cao ad,be,cf cắt nhau tại trực tâm h . gọi m,i lần lượt là trung điểm của bc, ah. đường thẳng qua i vuông góc với am, cắt ef tại s. 1) chứng minh ie vuông góc với me. 2) chứng minh sa song song với bc. 3) gọi p,q lần lượt là giao điểm của si với be,cf.chứng minh i là trung điểm của pq.
Cho đường tròn (O; R), dây cung BC cố định (BC < R), A là điểm di động trên cung lớn BC, (A không
trùng B và C). Gọi AD, BE, CF là các đường cao của tam giác ABC; EF cắt BC tại P, qua D kẻ đường thẳng song
song với EF cắt AC tại Q và cắt AB tại R.
1. Chứng minh tứ giác BQCR là tứ giác nội tiếp.
2. Gọi M là trung điểm cạnh BC. Chứng minh rằng M thuộc đường tròn ngoại tiếp tam giác DEF.
3. Chứng minh hai tam giác EPM và DEM là hai tam giác đồng dạng.