Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thầy Cao Đô

Cho tam giác $A B C$ cân tại $A$. $C P, \, B Q$ là các đường phân giác trong của $\triangle A B C$ $(P \in A B, \,Q \in A C)$. Gọi $O$ là giao điểm của $C P$ và $B Q$.

a) Chứng minh tam giác $O B C$ là tam giác cân.

b) Chứng minh điểm $O$ cách đều ba cạnh $A B, \, A C$ và $B C$.

c) Chứng minh đường thẳng $A O$ đi qua trung điểm của đoạn thẳng $B C$ và vuông góc với nó.

d) Chứng minh $C P=B Q$.

e) Tam giác $A P Q$ là tam giác gì? Vì sao?

ミ★Zero ❄ ( Hoàng Nhật )
8 tháng 3 2023 lúc 14:02

A B C O P Q 1 2 2 1

a, BQ là đường phân giác của góc B 

=> \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{B}\) ( 1 )

CP là đường phân giác của góc C 

=> \(\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{C}\) ( 2 )

Mà tam giác ABC cân tại A 

= > \(\widehat{B}=\widehat{C}\) ( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 ) = > \(\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

Xét tam giác OBC có : 

\(\widehat{B_2}=\widehat{C_2}\) ( cmt )

= > Tam giác OBC cân tại O

b, Do O là giao của 2 đường phân giác BQ và CP của tam giác ABC 

nên O là trực tâm của tam giác ABC hay điểm O cách đều 3 cạnh AB,AC, BC của tam giác ABC 

c, Do O là trực tâm của tam giác ABC ( câu b, )

Mà tam giác ABC cân tại A 

= > AO vừa là đường cao vừa là đường trung tuyến của tam giác ABC tức là AO đi qua trung điểm của đoạn thẳng BC 

d, Xét \(\Delta QBC\) và \(\Delta PCB\) có :

\(\widehat{B_2}=\widehat{C_2}\left(cmt\right)\)

BC chung 

\(\widehat{B}=\widehat{C}\left(gt\right)\)

=> \(\Delta QBC=\Delta PCB\left(g-c-g\right)\)

= > CP = BQ ( 2 cạnh tương ứng )

e, Do tam giác QBC = tam giác PCB ( câu d, )

=> BP = CQ ( 2 cạnh tương ứng )

\(P\in AB\)

= > AP + PB = AB 

= > AP = AB - PB ( 4 )

\(Q\in AC\)

= > AQ + QC =AC

= > AQ = AC - QC ( 5 ) 

Từ ( 4 ) , ( 5 ) 

= > AP = AQ

Xét tam giác APQ có :

AP = AQ ( cmt ) 

= > Tam giác APQ cân tại A ( đpcm )

Nguyễn Quang Đạt
20 tháng 4 2023 lúc 21:26

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Thân Việt Phong
23 tháng 4 2023 lúc 9:08

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

△�

Nguyễn Châu Anh
23 tháng 4 2023 lúc 16:29

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Nguyễn Minh An
23 tháng 4 2023 lúc 18:43

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Đào Thanh  Hà
24 tháng 11 2023 lúc 10:21

dễ

Quyên
28 tháng 1 lúc 9:45

1230

Nguyễn Quốc Huy
6 tháng 3 lúc 7:55

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Nguyễn Quốc Huy
6 tháng 3 lúc 7:55

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Nguyễn Quốc Huy
6 tháng 3 lúc 7:55

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Tống Thị Ánh Ngọc
6 tháng 3 lúc 7:56

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

Hoàng Gia Bảo
6 tháng 3 lúc 9:24

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại 

Mai Thế Huy
12 tháng 4 lúc 21:11

a, BQ là đường phân giác của góc B 

=> \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{B}\) ( 1 )

CP là đường phân giác của góc C 

=> \(\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{C}\) ( 2 )

Mà tam giác ABC cân tại A 

= > \(\widehat{B}=\widehat{C}\) ( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 ) = > \(\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

Xét tam giác OBC có : 

\(\widehat{B_2}=\widehat{C_2}\) ( cmt )

= > Tam giác OBC cân tại O

b, Do O là giao của 2 đường phân giác BQ và CP của tam giác ABC 

nên O là trực tâm của tam giác ABC hay điểm O cách đều 3 cạnh AB,AC, BC của tam giác ABC 

c, Do O là trực tâm của tam giác ABC ( câu b, )

Mà tam giác ABC cân tại A 

= > AO vừa là đường cao vừa là đường trung tuyến của tam giác ABC tức là AO đi qua trung điểm của đoạn thẳng BC 

d, Xét \(\Delta QBC\) và \(\Delta PCB\) có :

\(\widehat{B_2}=\widehat{C_2}\left(cmt\right)\)

BC chung 

\(\widehat{B}=\widehat{C}\left(gt\right)\)

=> \(\Delta QBC=\Delta PCB\left(g-c-g\right)\)

= > CP = BQ ( 2 cạnh tương ứng )

e, Do tam giác QBC = tam giác PCB ( câu d, )

=> BP = CQ ( 2 cạnh tương ứng )

\(P\in AB\)

= > AP + PB = AB 

= > AP = AB - PB ( 4 )

\(Q\in AC\)

= > AQ + QC =AC

= > AQ = AC - QC ( 5 ) 

Từ ( 4 ) , ( 5 ) 

= > AP = AQ

Xét tam giác APQ có :

AP = AQ ( cmt ) 

= > Tam giác APQ cân tại A ( đpcm )

Đỗ Đăng Khôi
31 tháng 5 lúc 17:49

a) △𝐴𝐵𝐶 cân tại 𝐴 nên 𝐴𝐵𝐶^=𝐴𝐶𝐵^.

Vì 𝐵𝑄 và 𝐶𝑃 là đường phân giác của 𝐵^,𝐶^ nên 𝐵1^=𝐵2^=𝐴𝐵𝐶^2𝐶1^=𝐶2^=𝐴𝐶𝐵^2.

Do đó 𝐵1^=𝐵2^=𝐶1^=𝐶2^.

Suy ra △𝑂𝐵𝐶 cân tại 𝑂.

b) Vì 𝑂 là giao điểm các đường phân giác 𝐶𝑃 và 𝐵𝑄 trong △𝐴𝐵𝐶 nên 𝑂 là giao điểm ba đường phân giác trong △𝐴𝐵𝐶.

Do đó, 𝑂 cách đều ba cạnh 𝐴𝐵,𝐴𝐶 và 𝐵𝐶.

c) Ta có △𝐴𝐵𝐶 cân tại 𝐴,𝐴𝑂 là đường phân giác của góc 𝐴 nên 𝐴𝑂 đồng thời là trung tuyến và đường cao của △𝐴𝐵𝐶.

Vậy đường thẳng 𝐴𝑂 đi qua trung điểm của đoạn thẳng 𝐵𝐶 và vuông góc với nó.

d) Ta có △𝑃𝐵𝐶=△𝑄𝐶𝐵 (g.c.g)

⇒𝐶𝑃=𝐵𝑄 (hai cạnh tương ứng).

e) Ta có 𝐴𝑃=𝐴𝐵−𝐵𝑃𝐴𝑄=𝐴𝐶−𝐶𝑄 (1);

△𝑃𝐵𝐶=△𝑄𝐶𝐵⇒𝐵𝑃=𝐶𝑄 (2).

Lại có 𝐴𝐵=𝐴𝐶 (tam giác 𝐴𝐵𝐶 cân tại 𝐴) (3).

Từ (1), (2) và (3) suy ra 𝐴𝑃=𝐴𝑄.

Vậy tam giác 𝐴𝑃𝑄 cân tại 𝐴.


Các câu hỏi tương tự
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết