\(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{8^2+10^2}{2}-\dfrac{7^2}{4}}=\sqrt{\dfrac{279}{4}}=\dfrac{3\sqrt{31}}{2}\)
\(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{8^2+10^2}{2}-\dfrac{7^2}{4}}=\sqrt{\dfrac{279}{4}}=\dfrac{3\sqrt{31}}{2}\)
Cho tam giác ABC có C(-1;-2),đường trung tuyến kẻ từ A và đường cao kẻ tù B lần lượt có phương trình là 5x+y-9=0 và x+3y-5=0. Tìm tọa độ A và B
Tam giác ABC có AB = 6 ; AC = 8 và BC = 10. Độ dài đường trung tuyến xuất phát từ đỉnh A của tam giác bằng:
A. 3
B. 6
C. 7
D. 5
Cho tam giác ABC có a,b,c,ma,mb,mc,R lần lượt là độ dài các cạnh BC,CA,AB, độ dài các đường trung tuyến kẻ từ A,B,C và bán kính đường tròn ngoại tiếp tam giác. Biết rằng: \(\frac{a^2+b^2}{mc}+\frac{b^2+c^2}{ma}+\frac{c^2+a^2}{mb}=12R\). Chứng minh rằng tam giác ABC đều
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(4; 3); B(2; 7) và C( - 3; -8). Tìm toạ độ chân đường cao A’ kẻ từ đỉnh A xuống cạnh BC.
A. (1 ; -4)
B. (-1; 4)
C. (1; 4)
D. (4; 1)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A( 4; 3); B(2; 7) và C(- 3; -8). Tìm toạ độ chân đường cao A’ kẻ từ đỉnh A xuống cạnh BC?
A. A’ (1; -4)
B. A’ (-1; 4)
C. A’ (1; 4)
D.A’ (4; 1)
Tính độ dài đường trung tuyến
Cho tam giác ABC, có cạnh BC=a, AC=b, AB =c. Gọi ma , mb , mc lần lượt là độ dài trung tuyến từ đỉnh A, B, C của tam giác. Hãy tính ma , mb , mc theo a, b, c.
Cho tam giác ABC có AB = c; BC = a; AC = b . Nếu giữa a; b; c có liên hệ b2 + c2 = 2a2 thì độ dài đường trung tuyến xuất phát từ đỉnh A của tam giác tính theo a bằng:
A. a 3 2
B. a 3 3
C. a
D. 2a
Cho tam giác ABC có a = 7cm, b = 8cm, c = 6cm. Hãy tính độ dài đường trung tuyến ma của tam giác ABC đã cho.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A( 4;3); B (2;7) và C(– 3; -8). Tìm toạ độ chân đường cao A’ kẻ từ đỉnh A xuống cạnh BC
A. ( 1; -4)
B. (- 1; 4)
C. ( 1; 4)
D. (4; 1)
Cho tam giác ABC có a=48cm,b=26cm,c=30cm
a) Tính các góc tam giác ABC
b)Tính diện tích tam giác ABC
c) Tính độ dài 3 đường trung tuyến của tam giác ABC