Cho tam giác ABC vuông cân tại A. Kẻ đường cao AH, M \(\in\) BC sao cho CM=CA.
Đường thẳng đi qua M và song song với CA cắt AB tại I.
a/ CMR: tứ gaics ACMI là hình thang vuông.
b/ CMR: MI=MH , và AI=AH.
c/ CMR: AB+AC<AH+BC
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE
a ) Chứng minh : BA DC
b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ;
c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ;
d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD .
nhanh nhé mik cần trước 8:45 hứa tick đúng
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB, cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. a) Chứng minh: BE BA DE DC' b) Qua E kẻ đường thẳng song song với AC, đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I, K. Chứng minh: EI = EK; c) Gọi N là giao điểm của EH và AC; Gọi Q là giao điểm của DN và BC; Gọi P là giao điểm của BN và AD. Chúng minh: NA = NC và PQ // BD; d) Gọi G là giao điểm của đường thẳng AQ và CD. Qua Q kẻ đường thẳng song song với CE, cắt đường thẳng AC tại T. Chứng minh PT vuông góc với AD.
giúp mik với ak
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Qua B kẻ
đường thẳng vuông góc với AB, cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt
nhau tại E.
a) Chứng minh: BE/BA = DE/DC
b) Qua E kẻ đường thắng song song với AC, đường thắng này lần lượt cắt các đường
thắng AD, BC tại I, K. Chứng minh: EI = EK;
c) Gọi N là giao điểm của EH và AC; Gọi Q là giao điểm của DN và BC; Gọi P là giao
điểm của BN và AD. Chứng minh: NA = NC và PQ // BD;
d) Gọi G là giao điểm của đường thăng AQ và CD. Qua Q kẻ đường thăng song song
với CE, cắt đường thắng AC tại T. Chứng minh PT vuông góc AD.
mn giúp với ạ, gấp lắm, chỉ cần câu b,c thôi ạ