cho tam giác ABC vuông tại A, AB<AC. tia phân giác của góc B và góc C thứ tự cắt AC,AB tại D và E. từ A kẻ đường thẳng vuông góc với BD tại K và cắt BC tại N. từ A kẻ đường thẳng vuông góc với CE tại I và cắt BC tại M
a) chứng minh rằng DN // EM
b) tính góc MAN
c) gọi O là giao điểm của BD và CE chứng minh rằng IK2 =AO2/2
Cho tam giác ABC, A = 90 độ , AB < AC. Tia phân giác của B và C thứ tự cắt
AC, AB tại D, E. Từ A kẻ đường thẳng vuông góc với BD tại K và cắt BC tại N. Từ A kẻ
đường thẳng vuông góc với CE tại I cắt BC tại M.
a) Chứng minh DN//EM.
b) Tính MAN
c) Gọi O là giao điểm của BD và CE. Chứng minh rằng AO^2 = 2*(IK^2)
giúp mk phần c với !!!!!!!
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) CMR tam giác BID bằng tam giác CIA
b) CMR : BD vuông góc với AB
c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC
d) CMR: AB là tia phân giác cuả góc DAM
Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC
a) C/M: tam giác AKB bằng tam giác AKC
b) C/M: AK vuông góc với BC
c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE = BD . Các đường thẳng vuông góc với BC kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a) CMR: BM = CN.
b) Gọi I là giao điểm của MN với BC, đường thẳng vuông góc với MN tại I cắt đường thẳng AH tại K (H là trung điểm của BC). Chứng minh tam giác KMN cân.
c) CMR: CK vuông góc với AN.
Cho tam giác ABC vuông cân tại A.Tia phân giác góc B cắt AC tại D,tia phângiác góc C cắt AB tại E. GỌi I là giao diểm của BD và CE.Đường thẳng song song với AI kẻ từ E cắt BD tại M.Đường thẳng song song với AI kẻ từ D cắt CE tại N
a) Tính góc BIC
b) Chứng minh tam giác ADE vuông cân và AI là tia phân giác của góc BAC
C) CHứng minh ED//BC và AI vuông góc với BC
d) Chứng mninh bốn điểm D,E,M,N cách đều điểm I
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho △ABC cân tại A.Trên cạnh BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE. Đường thẳng vuông góc với BC tại D cắt AB tại M, đường thẳng vuông góc với BC tại E cắt đường thẳng AC tại N.
a)CMR :△MDB=△NEC
b)Gọi I là giao điểm của MN và BC.CMR: I là trung điểm của MN
c)Kẻ AH là đường phân giác của góc BAC ; đường thẳng kẻ qua I vuông góc với MN cắt đường thẳng AH tại K. Chứng minh góc MBK= góc NCK
d)CMR: KC⊥AC
cho tam giác ABC vuông tại A có AB = AC . Gọi M là TĐ của BC, D là TĐ của AC
a, CMR, AM vuông góc vs BC
b, Tù A kẻ đường thẳng vuông góc vs BD cắt BC tại E. Trên tia đối tia DE lấy đ' F sao cho DF = DE . CMR, AE//CE
c, Từ C dựng đường thẳng vuông góc vs AC cắt AE tại G . CMR : tam giác BAD = tam giác ACG
d, CM, AB = 2CG