ta có\
\(\left(\sqrt{x}+2\sqrt{y}\right)^2\subseteq\left(1^2+2^2\right)\left(x+y\right)\)
\(< =>10^2\subseteq5\left(x+y\right)\)
\(< =>20\subseteq x+y\)
chết mik làm rồi ra v
ta có\
\(\left(\sqrt{x}+2\sqrt{y}\right)^2\subseteq\left(1^2+2^2\right)\left(x+y\right)\)
\(< =>10^2\subseteq5\left(x+y\right)\)
\(< =>20\subseteq x+y\)
chết mik làm rồi ra v
Cho x,y là các số thực dương thỏa mãn x+ 3y \(\le\) 10
Chứng minh rằng \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Dấu đẳng thức xảy ra khi nào ?
Cho x,y là các số thực dương thỏa mãn \(x+3y\le10\)
Chứng minh rằng \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Dấu đẳng thức xảy ra khi nào ???
Cho x,y là các số dương thỏa mãn: x+3y\(\le\)10
CMR:: \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Cho \(\sqrt{x}+2\sqrt{y}=10\). Chứng minh x+y\(\ge\) 20
Cho \(\sqrt{x}+2\sqrt{y}=10\). Chứng minh x+y\(\ge\) 20
cho \(\sqrt{x}+2\sqrt{y}=10\)chứng minh rằng \(x+y\ge20\)
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
Cho 2 số dương x,y. Chứng minh: \(\dfrac{2015}{2016}\sqrt{\dfrac{x}{y}}+\dfrac{2016}{2017}\sqrt{\dfrac{y}{x}}>1+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{6\sqrt{xy}}\)