chứng minh rằng với số nguyên a thì
(a+1)^2 + a^2 + a^2(a+1)^2 là số chính phương
help me !!!!!!!
Cho A=\(2+2\sqrt{12n^2+1}\)( với n là số tự nhiên).Chứng minh rằng nếu A là số tự nhiên thì A là số chính phương
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...Do a,n là số nguyên dương thỏa mãn \(a=2+2\sqrt{28n^2+1}\),. Chứng minh a là số chính phương
a, Cho P=\(30\left(31^9+31^8+31^7+...+31^2+32\right)+1\).Chứng mình rằng P là số chính phương?
b, Chứng minh rằng nếu m là số nguyên lẻ thì:
\(\left(m^3+3m^2-m-3\right)\)chia hết cho 48
Cho biể thức: \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
1. Chứng tỏ rằng với mọi số nguyên x, giá trị của A là số chính phương.
2. Tìm số nguyên x sao cho A=25.
Cho 1<=n là STN.CMR A=\(2+2\sqrt{28n^2+1}\)là số nguyên thì A là số chính phương.
Cho phương trình x2-ax+1=0 với a là tham số nguyên lớn hơn 1.
Chứng minh rằng phương trình đã cho có nghiệm x và đồng thời x + 1/x là số nguyên dương.
Cho x, y là các số hữu tỉ. Chứng minh rằng nếu \(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\) thì x và y là 2 số chính phương.