Cho số phức thỏa mãn |z-2i|=m^2+4m+6, với m là số thực. Biết rằng tập hợp các điểm biểu diễn của số phức w=(4-3i)z+2i là đường tròn. Bán kính của đường tròn đó có giá trị nhỏ nhất bằng
A..
B.2.
C.10.
D..
Cho số phức z thỏa mãn |z| = 1 m 2 + 2m, trong đó m là số thực dương tùy ý. Biết rằng với mỗi m, tập hợp các điểm biểu diễn số phức w = (2i+1)(i+ z ¯ )-5+3i là một đường tròn bán kính r. Tìm giá trị nhỏ nhất của r
A . 3 2
B . 2 3
C . 3 5
D . 5 3
Cho số phức z thỏa mãn z = 2 Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
Cho số phức z thỏa mãn: z = m 2 + 2 m + 5 , với m là tham số thực thuộc ℝ .
Biết rằng tập hợp các điểm biểu diễn các số phức w=(3-4i)z-2i là một đường tròn.
Tính bán kính r nhỏ nhất của đường tròn đó.
A. r=20
B. r=4
C. r=22
D. r=5
Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 + i 8 ) z + i là một đường tròn. Bán kính r của đường tròn đó là
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho các số phức z thỏa mãn z - i = 5 . Biết rằng tập hợp điểm biểu diễn số phức w = i z + 1 - i là đường tròn. Tính bán kính của đường tròn đó.
A. r = 22
B. r = 10
C. r = 4
D. r = 5
Cho số phức z thỏa mãn z = 2 Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn, bán kính R của đường tròn đó bằng
A. 7
B. 20
C. 2 5
D. 7