Chọn C.
Ta có |z|2 + |(z – 1 – 2i) + (1 + 2i)|2 = |z – 1- 2i|2 + |1 + 2i|2 + 2(z – 1 – 2i)(1 + 2i) (1)
|z – 3 – 6i|2 = |(z – 1 – 2i) – 2(1 + 2i)|2 = |z – 1 – 2i|2 + 4|1 + 2i|2 - 4(z – 1- 2i)(1 + 2i) (2)
Từ (1) và (2) suy ra: 2|z|2 + |z – 3- 6i|2 = 3|z – 1- 2i|2 + 6|1 + 2i| = 12 + 30 = 42.
Áp dụng bất đẳng thức Bunhiakovsky ta có:
Vậy