Cho z là số phức thỏa mãn điều kiện 2 z − 1 1 + i + z ¯ + 1 1 − i = 2 − 2 i . Tính tổng bình phương phần thực và phần ảo của số phức w = 9 z 2 + 6 z + 1
A. 25
B. 1
C. 49
D. 41
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Cho số phức z thỏa mãn điều kiện (1+i) z ¯ - 1 - 3i = 0. Tìm phần ảo của số phức w = 1 - zi + z ¯
A. -i
B. -1
C. 2
D. -2i
Cho số phức z thỏa mãn điều kiện 2 + i z + 1 - i 1 + i = 5 - i . Môđun của số phức w = 1 + 2 z + z 2 có giá trị là
A. 10.
B. 25
C. 100.
D. 40
Cho số phức z thỏa mãn điều kiện 2 + i z + 1 - i 1 + i = 5 - i Môđun của số phức w = 1 + 2 z + z 2 có giá trị là
A. -10
B. 100
C. -100
D. 10
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z thỏa mãn điều kiện: z - 1 + 2 i = 5 và w = z + 1 + i có môđun lớn nhất. Số phức z có môđun bằng:
A. 2 5
B. 3 2
C. 6
D. 5 2
Cho số phức z thỏa mãn điều kiện: z - 1 + 2 i = 5 và w = z +1 +i có môđun lớn nhất. Số phức z có môđun bằng:
A. 6
B. 3 2
C. 5 2
D. 2 5
Cho số phức z thỏa mãn điều kiện (z+2)(1+2i) = 5 z ¯ . Tìm phần ảo của số phức w = ( z + 2 i ) 2019
A . 2 1009
B . 0
C . - 2 1009
D . 2019