Xét các số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn điều kiện |z - 4 - 3i| = 5 . Tính P = a + b khi giá trị biểu thức |z + 1 - 3i + |z - 1 + i|| đạt giá trị lớn nhất.
A. P = 10
B. P = 4
D. P = 6
D. P = 8
Xét các số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn điều kiện |z - 4 - 3i| = 5 . Tính P = a + b khi giá trị biểu thức |z + 1 - 3i| + |z - 1 + i| đạt giá trị lớn nhất.
A. P = 10
B. P = 4
C. P = 6
D. P = 8
Xét các số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn điều kiện |z-4-3i| = 5 . Tính P = a + b khi giá trị biểu thức |z+1-3i| + |z-1+i| đạt giá trị lớn nhất.
A. P = 10
B. P = 4
C. P = 6
D. P = 8
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(i+1) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z thỏa mãn z - 1 + 3 i + z ¯ + 5 + i = 2 65 Giá trị nhỏ nhất của z + 2 + i đạt được khi z = a + b i với a,b là các số thực dương. Giá trị của 2 a 2 + b 2 bằng
Xét các số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn đồng thời hai điều kiện z + y i = z ¯ + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P=a+2b là:
A. P= - 61 10
B. P= - 252 50
C. P= - 41 5
D. P= - 18 5
Số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 2 = z và ( z + i ) ( z ¯ - i ) là số thực.
Giá trị của biểu thức S=a+2b bằng bao nhiêu?
A. S=-1
B. S=1
C. S=0
D. S=-3