Chọn B.
Ta có: z = ( 2 + i) ( 3 - i) = 6 - 2i + 3i - i2 = 7 + i
Nên vậy phần thực bằng a = 7 và phần ảo b = -1.
Chọn B.
Ta có: z = ( 2 + i) ( 3 - i) = 6 - 2i + 3i - i2 = 7 + i
Nên vậy phần thực bằng a = 7 và phần ảo b = -1.
Cho số phức z thỏa mãn 5 z + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a+b bằng
A. 13
B. -5
C. 9
D. 5
Cho số phức z = 4 - 8 i 1 + i . Tìm phần thực a và phần ảo b của số phức z ¯
A. a = 2; b = 6.
B. a = -2; b = -6.
C. a = -2; b = 6.
D. a = 2; b = -3.
Nếu a ,b lần lượt là phần thực và phần ảo của số phức z=1-i thì
A. .
B. .
C. .
D.
Gọi a,b lần lượt là phần thực và phần ảo của số phức z = | 1 - 3 i | ( 1 + 2 i ) + | 3 - 4 i | ( 2 + 3 i ) . Giá trị của a-b là
A.7
B.-7
C.31
D.-31
Gọi a, b lần lượt là phần thực và phần ảo của số phức z = 1 - 3 i ( 1 + 2 i ) + 3 - 4 i ( 2 + 3 i ) . Giá trị của a-b là
Hãy biểu diễn các số phức z trên mặt phẳng tọa độ, biết |z| ≤ 2 và:
a) Phần thực của z không vượt quá phần ảo của nó;
b) Phần ảo của z lớn hơn 1;
c) Phần ảo của z nhỏ hơn 1, phần thực của z lớn hơn 1.
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bằng phần ảo của nó ;
b) Phần thực của z là số đối của phần ảo của nó ;
c) Phần ảo của z bằng hai lần phần thực của nó cộng với 1;
d) Modun của z bằng 1, phần thực của z không âm.
Cho hai số phức z = a + b i , z ' = a ' + b ' i ( a , b , a ' , b ' ∈ ℝ )
Tìm phần ảo của số phức z z ' .
A. ( a b ' + a ' b ) i
B. a b ' + a ' b
C. a b ' - a ' b
D. a a ' - b b '
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
a) Phần thực của z bẳng -2
b) Phần ảo của z bẳng 3
c) Phần thực của z thuộc khoảng (-1;2)
d) Phần ảo của z thuộc đoạn [1;3]
e) Phần thực và phần ảo đều thuộc đoạn [-2; 2]