Cho số nguyên tố p thỏa mãn 1/p=1/a+1/b(a;b thuộc N*)
Tìm p để a hoặc b là số chính phương
Bài 1: Tìm tất cả các bộ 3 số tự nhiên không nhỏ hơn 1 sao cho tích của 2 số bất kì cộng với 1 chia hết cho số còn lại
Bài 2: Cho 3 số tự nhiên a,b,c thỏa mãn đồng thời 2 điều kiện:
1) a-b là số nguyên tố
2) 3c^2 = c(a+b)+ab
CMR : 8c+1 là 1 số chính phương
Làm đúng, đủ, chi tiết sẽ được TICK! Thanks!
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
Cho a, b, c là ba số nguyên dương thỏa mãn ab = c(a+b) và a, b nguyên tố cùng nhau. Chứng minh rằng abc là số chính phương.
Cho các số nguyên dương a;b;c thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)Chứng minh rằng:a,a+b không thể là số nguyên tố ....b,nếu c>1 thì a+c và b+c không đồng thơi là số nguyên tố
Tìm số nguyên tố a,b thỏa mãn:
a^b * b^a = (2a+b+1)*(2b+a+1)
Giúp mình nha!
1, Tìm n thỏa mãn n+1945 và n+2004 là số chính phương
2, Cho a,b thuộc N* thỏa mãn A=a2+b2 nguyên. Chứng minh A là số chính phương
cho số nguyên tố a,b,c,d thỏa mãn
ab=cd,
cmr A=a^n+b^n+c^n+d^n là 1 hợp số với n thuộc N