Cho hai số hữu tỉ\(\frac{a}{b}\)và\(\frac{c}{d}\) với b>0;c>0
Chứng tỏ rằng\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{d+c}{b+d}< \frac{c}{d}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
1. Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)với b > 0, d > 0. Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2. Cho \(a,b,n\in Z\)và b > 0, n > 0
Hãy so sánh 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+n}{b+n}\)
cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0,d>0) . chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad< bc ;
b) Nếu ad<bc thì \(\frac{a}{b}< \frac{c}{d}\)
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
Cho 2 số hữu tỉ \(\frac{a}{b},\frac{c}{d}\)
Chứng minh rằng: nếu \(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
cho 2 số hữu tỉ \(\frac{a}{b}\)và\(\frac{c}{d}\) với b>0, d>0.
chứng tỏ \(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\).
Cho hai số hữu tỉ\(\frac{a}{b}\) và\(\frac{c}{d}\)(b>0,d>0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}\)<\(\frac{c}{d}\) thì ad<bc;
b)Nếu ad<bc thì \(\frac{a}{b}\)<\(\frac{c}{d}\)
a) Chứng tỏ rằng nếu \(\frac{a}{b}<\frac{c}{d}\)(b>0,d>0) thì \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\).
b) Hãy viết ba số hữu tỉ xen giữa \(\frac{-1}{3}và\frac{-1}{4}\)
c) Số hữu tỉ âm nhỏ hơn số tự nhiên? (đúng hay sai)