Các số hữu tỉ a và b phải thỏa manx điều kiện gì để có tỉ lệ thức \(\frac{a}{b}\)=\(\frac{a+c}{b+c}\)(c khác 0)
Nhanh lên nha! Mai mik phải đi hk rùi!
Mini game : Thử trí IQ
Cho a,b,c,d,e là các số hữu tỉ khác 0. Các số hữu tỉ d và e phải thoả mãn điều kiện gì để từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)có thể suy ra tỉ lệ thức
\(\frac{a}{b}=\frac{a+c}{b+e}\)
Ai cảm thấy hào hứng thì kb với mình và tick cho mình nha
Cho a, b, c là các số hữu tỉ khác 0 và a = b + c.
C/m: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là một số hữu tỉ.
1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\frac{a}{b}\)> \(\frac{a+c}{b+c}\)
2/ So sánh 2 số hữu tỉ A=\(\frac{5^{2013}+17}{5^{2011}+17}\)và B=\(\frac{5^{2011}+1}{5^{2009}+1}\)
Help me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\frac{a}{b}\) > \(\frac{a+c}{b+c}\)
1. Cho số hữu tỉ x=a-5\a (a khác 0). Với giá trị nguyên nào của a thì x là số nguyên?
2. Cho a, b thuộc Z; b>0; n thuộc N sao. Hãy so sánh hai số hữu tỉ\(\frac{a}{b}\) và\(\frac{a+n}{b+n}\)
Cho 3 số a,b,c khác 0 và a + b + c khác 0 thõa mãn điều kiện : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức :
P = \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Cho a,b,c là các số hữu tỉ khác 0, sao cho:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)