Cho Sn = \(\left(1+\frac{1}{2}\right)+\left(2+\frac{2}{2^2}\right)+\left(3+\frac{3}{2^3}\right)+...+\left(n+\frac{n}{2^n}\right)\). Tìm n để Sn = 4951
Cho Sn= \(\frac{1^1-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\) (Với \(n\in N\) và n>1)
CMR : Sn k là số nguyên
Với mọi a,n là các SN dương a \(\ne\) 1 thì
\(\frac{1}{a}+\frac{2}{a^2}+\frac{3}{a^3}+...+\frac{n}{a^n}
Bài 1 : Tính C= \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n-1}{n!}\)
Bài 2 : CMR D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 3: Cho biểu thức P=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
a) CMR : P= \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
b) Giải bài toán trên trog trường hợp tổng quát
Bài 4 : CMR: \(\forall n\in Z\left(n\ne0;n\ne1\right)\) thì Q= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\) không phải là số nguyên .
Bài 5 : CMR : S=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{200^2}< \frac{1}{2}\)
Tính giá trị của biểu thức: \(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{\left(n-1\right)^2}-\frac{1}{n^2}+\frac{1}{n^2}-\frac{1}{\left(n-1\right)^2}\)
Tính tổng sau
a) \(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
b) \(B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}+\frac{1}{2^n}\)
Cho \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+.......+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}....+\frac{1}{100}}\)
\(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+.....+\frac{1}{495}+\frac{1}{500}}\)
Tính M; N
Bài 1 :a, Tính tổng\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+.......+\left(-\frac{1}{7}\right)^{2007}\)
b, CMR \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+.......+\frac{99}{100!}<1\)
c, CMR: mọi số nguyên dương n thì: \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
Tính các tích sau: với n là số tự nhiên, n<3
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{n}\right)\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)\)
tính các tích sau với nEN, n lớn hơn bằng 2
a)\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\)
b)\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\)
c)\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)