cho p/s a/b. tìm p/s c/d sao cho : \(\frac{a}{b}+\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)
Cho a, b, c, d c N* :
S = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Chứng minh S không là số tự nhiên
Bài 1: Cho a,b,c là số nguyên dương. Chứng tỏ s không là số tự nhiên :
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Bài 2 : Tìm các số tự nhiên a,b,c sao cho:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Bài 1:Cho a,b,c,d \(\varepsilon\)N* và S=\(\frac{a}{a+b+c}\)+ \(\frac{b}{b+c+d}\)+ \(\frac{c}{c+d+a}\)+\(\frac{d}{d+a+b}\).Chứng tỏ rằng S không là số tự nhiên
Bài 2:Tìm các số tự nhiên a,b,c,d sao cho \(\frac{1}{a^2}\)+ \(\frac{1}{b^2}\)+\(\frac{1}{c^2}\)+ \(\frac{1}{d^2}\)=1
Tìm STN lớn nhất có 3 c/s sao cho số đó chia hết cho mỗi hiệu a-b,c-d,e-f và \(\frac{a}{b}=\frac{125}{35};\frac{c}{d}=\frac{114}{30};\frac{e}{f}=\frac{56}{24}\)
Cho a,b,c,d>0
Cho \(A=\frac{2a+b+c}{a+b+c}+\frac{2b+c+d}{b+c+d}+\frac{2c+d+a}{c+d+a}+\frac{2d+a+b}{d+a+b}\)
Tìm [A]
a) \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)= ?
b) Tìm các STN a, b, c, d (khác nhau) sao cho :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Cho a + b + c + d khác 0 và \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
Tính giá trị biểu thức \(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
cho a,b,c,d thoả mãn \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}=1\)
Tính \(\frac{a^2}{b+c+d}+\frac{b^2}{c+d+a}+\frac{c^2}{d+a+b}+\frac{d^2}{a+b+c}\)