S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103
S=1/1-1/103
S=102/103
Vì 102/103<1 nên S<1
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(S=1-\frac{1}{103}\)
\(S=\frac{102}{103}< 1\)
\(\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+.......+\frac{3}{100x103}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}....+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{1}{1}-\frac{1}{103}\)
=\(\frac{102}{103}\)
suy ra :S<1
mình thiếu cái này trong bài nha
\(\Rightarrow S=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{103.106}\)<1
\(\Rightarrow S=3.\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{103.106}\right)< 1\)
\(\Rightarrow S=3.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{103}-\frac{1}{106}\right)\)< 1
\(\Rightarrow S=3.\left(\frac{1}{4}-\frac{1}{106}\right)\)< 1
\(\Rightarrow S=3.\frac{51}{212}\)< 1
\(\Rightarrow S=\frac{153}{212}< 1\)
Vì \(\frac{153}{212}< 1\Rightarrow S< 1\)
S = 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/100×103
S = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/100 - 1/103
S = 1 - 1/103
S = 103/103 - 1/103
S = 102/103 < 1
Vậy S < 1 ( điều phải chứng minh )
S = 3/1×4 + 3/4×7 + 3/7×10 + ... + 3/100×103
S = 1 ‐ 1/4 + 1/4 ‐ 1/7 + 1/7 ‐ 1/10 + .... + 1/100 ‐ 1/103
S = 1 ‐ 1/103 S = 103/103 ‐ 1/103
S = 102/103 < 1
Vậy S < 1