S=abc+bca+cab
=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c=111.(a+b+c)=3.37.(a+b+c)
Giả sử S là SCP mà 37 là 1 số nguyên tố=>S chia hết cho 37.Nhưng a+b+c ko chia hết cho 37
Vậy S ko là 1 SCP(đpcm)
hoặc cách này cũng đc(cô mk chỉ):
Giả sử S là SCP thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn=>3(a+b+c) chia hết cho 37
do đó a+b+c chia hết cho 37(*)
Nhưng 1<a+b+c<27
=>(*) ko thể xảy ra
Hay S ko là 1 SCP