S = 5 + 52 + 53 + ......... + 52006
5S = 52 + 53 + 54 + .......... + 52007
5S - S = ( 52 + 53 + 54 + .......... + 52007) - ( 5 + 52 + 53 + ......... + 52006 )
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
a)\(S=5+5^2+5^3+.....+5^{2006}\Rightarrow5S=5^2+5^3+5^4+\)\(....+5^{2007}\)
\(\Rightarrow5S-S=\left(5^2+5^3+5^4+....+5^{2007}\right)-\left(5+5^2+5^3+.....+5^{2006}\right)\)
\(\Rightarrow4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
\(a.S=5+5^2+5^3+......+5^{2006}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+.....+\left(5^{2001}+5^{2002}+.....+5^{2006}\right)\)
\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+......+5^{2001}\left(1+5+5^2+5^3+5^4+5^5\right)\)
\(S=5.3906+........+5^{2001}.3906\)
\(S=3906\left(5+....+5^{2001}\right)\)
\(b.S=3906\left(5+....+5^{2001}\right)\)
\(S=126.3\left(5+....+5^{2001}\right)\)
\(\Rightarrow\text{S chia hết cho 126}\)