Ta có : S = 1 + 31 + 32 + .... + 32018
=> S - 4 = 1 + 31 + 32 + .... + 32018 - 4
=> S - 4 = 32 + 33 + 34 + ..... + 32018
=> S - 4 = (32 + 33 + 34 ) + ...... + (32016 + 32017 + 32018)
=> S - 4 = 3(3 + 32 + 33) + ..... + 32015(3 + 32 + 33)
=> S - 4 = 3.39 + .... + 32015.39
=> S - 4 = 39 (3 + .... + 32015) chia hết cho 39
Ta thấy S=(3S-S):2
S=3^0+3^1+3^2+...+3^2018
\(\Rightarrow\)3S=3+3^2+3^3+...+3^2019
\(\Rightarrow\)3S-S=(3+3^2+3^3+..+3^2019)-(3^0+3^1+3^2+...+3^2018)
\(\Rightarrow\)3S-S=3^2019-3^0=3^2019-1\(\Rightarrow\)conf thiếu để bên dưới